About seller
Air pollution is one of the main actors of stone deterioration. It influences not only the material itself but also prokaryotes colonizing rocks. Prokaryotes can affect rock substrates and biological colonization will most likely become relatively more important during the course of the 21st century. Therefore, it is necessary to understand the effects of air pollution on biological colonization and on the impact of this colonization on rock weathering. For this reason, we studied the prokaryotic community of Lede stone from two deteriorated monuments in Belgium one in the urban and one in the rural environment. This research conducts 16S rRNA gene Next Generation Sequencing combined with an isolation campaign. It revealed diverse and complex prokaryotic communities with more specialized bacteria present in the urban environment, while archaea were barely detected. Some genera could cause biodeterioration but the isolates did not produce a significant amount of acid. Soluble salts analysis revealed an important effect of salts on the prokaryotic community. Colour measurements at least indicate that a main effect of prokaryotes might be on the aesthetics In the countryside prokaryotic communities seemed to discolour Lede stone, while pollution most likely blackened building stones in the urban environment.Microplastics (MPs) have become a pressing environmental concern over the past few years and their extraction from solid samples is a scientific challenge that needs to be faced and solved. selleck Standardized and validated protocols for MPs extraction are lacking and the existing methodology, such as density separation, is often unable to separate high density polymers. The aim of our research was to develop a non-density based, inexpensive, simple and safe method to extract MPs from soil and compost samples. We tested an oil-based extracting technique exploiting the oleophilic properties of plastics. For validating the method, soil and compost samples were spiked with six different micro-polymers polyethylene, polystyrene, polyvinyl chloride, polycarbonate, polyethylene terephthalate and polyurethane. The obtained results are promising, and the polymer density had only a small role in the recovery rate low, medium and high density polymers reached a mean recovery rate of 90% ±2%, 97% ± 5% and 95% ± 4%, respectively.Recently, researchers have carried out a large number of studies on the adsorption of heavy metals by modified biochar, but there have been fewer explorations of the contributions and mechanisms of components in biochar composites on heavy metals adsorption. In this paper, the biochar was modified by Fe2+/Fe3+ and NaOH, and a further analysis of the adsorption of cadmium on the new biochar was conducted. It was found that (1) the adsorption capacity for cadmium of the modified biochar (M85) was 406.46 mg/g, which was 16 times that of the original biochar (C800); (2) the increased adsorption of cadmium onto the modified biochar had little correlation with the specific surface area, and the pure iron component was not the decisive factor for the huge adsorption capacity; and (3) the modified biochar was a kind of composite material with special construction, where the C-O-Fe structure that formed on its surface was the main reason for the sharp increase in adsorption. Among the iron components, iron oxides (Fe3O4, γ-Fe2O3 and Fe-O-Fe), iron-containing functional groups (-Fe-R-COOH and Fe-R-OH, etc.) and the mineral crystal XiFeYjOk reacted with the cadmium ion in aqueous solution to exchange, form complexes and precipitate, achieving the purpose of fixing the heavy metal. In addition, the aromatic structure C=Cπ can also adsorb Cd2+ to generate C=Cπ-Cd.Field ecological observations indicate that scleractinian coral exposed to early thermal stress are likely to develop higher tolerance to subsequent heat stress. The causes of this phenomenon, however, remain enigmatic. To unravel the mechanisms underlying the increased heat tolerance, we applied different thermal treatments to the scleractinian coral Acropora pruinosa and studied the resulting differences in appearance, physiological index, Symbiodiniaceae and bacterial communities, and transcriptome response. We found that early heat stress improved the thermal tolerance of the coral holobiont. After thermal acclimation, the community structure and symbiotic bacterial diversity in the microbiota were reorganized, whereas those of Symbiodiniaceae remained stable. RNA-seq analysis revealed that the downregulated coral host genes were mainly involved in pathways relating to metabolism, particularly the nitrogen metabolism pathway. This indicates that thermal acclimation led to decrease in the metabolism level in the coral host, which might be a self-protection mechanism. We suggest that thermal acclimation may increase scleractinian coral thermal tolerance by slowing host metabolism, altering the dominant bacterial population, and increasing bacterial diversity. This study offers new insights into the adaptive potential of scleractinian coral to heat stress from global warming.Hydrothermal carbonization (HTC) is considered as a promising technique for wastes conversion into carbon rich materials for various energetic, environmental and agricultural applications. In this work, the HTC of olive mill wastewater (OMWW) was investigated at different temperatures (180-220 °C) and both, the solid (i.e., hydrochars) and the final process liquid derived from the thermal conversion process were deeply analyzed. Results showed that the solid yield was affected by the temperature, i.e., decrease from 57% to 25% for temperatures of 180 °C and 220 °C, respectively. Furthermore, the hydrochars presented an increasing fixed carbon percentage with the increase of the carbonization temperature, suggesting that decarboxylation is the main reaction driving the HTC process. The decrease in the O/C ratio promoted an increase of the high heating value (HHV) by 32% for hydrochar prepared at 220 °C. The process liquids were sampled and their organic contents were analyzed using GC-MS technique. Acids, alcohols, phenols and sugar derivatives were detected and their concentrations varied with carbonization temperatures.