About seller
Overall, the meta-analysis suggests that urbanized habitats are functioning more as safe sites than as ecological traps, mainly for certain species with characteristics that have allowed them to adapt well to urban areas. That is, many of the studied species prefer more urbanized habitats over other less urbanized sites, and their fitness is not modified, or it is even increased. However, there was high heterogeneity among studies. We also performed meta-regressions to identify variables accounting for this heterogeneity across studies and we demonstrate that outcomes may depend on methodological aspects of studies, such as study design or the approach used to measure habitat preference and fitness. More research is needed for poorly studied regions and on a wider range of species before generalizations can be made on the role of urban areas for biodiversity conservation.Cadmium (Cd) pollution and phosphorus (P) leaching in paddy soils has raised the global concern. In this study, two kinds of the low grade phosphate rocks activated by the sodium lignosulfonate (SL) and humic acid (HA) were fabricated for soil Cd passivation and reduction of the soil P leaching simultaneously. The mechanisms of the Cd adsorption and passivation by the activated phosphate rocks (APRs) were investigated through the batch experiment and the indoor culture test (i.e., incubation and pot experiments) in the Cd-polluted paddy soil. The effects of the APRs on the potted rice growth, uptake of Cd by rice and P loss were also studied. In comparison with the superphosphate treatment, the cumulative P loss from SL- and HA-APRs were reduced by the 65.2% and 65.3%. In terms of the Cd passivation, the Cd adsorbed on the APRs was through the chemical ways (i.e., ligand exchange and the formation of internal complexes). The application of the APRs significantly decreased the soil exchangeable Cd by 48.9%-55.0%, while the Fe/Mn oxides-bound Cd and residual Cd increased significantly by 19.6%-20.3% and 50.7%-69.4%, respectively. Pot experiment also suggested that both the APRs treatments (SL- and HA-APRs) significantly diminished soil Cd accumulation in rice (by 72.7% and 62.8%) coupling with the significantly decreased P leaching. These results provide a sustainable way to explore a novel cost-effective, high-efficient and bi-functional mineral-based soil amendments for environmental remediation.The growing accumulation of plastic wastes is one of the main environmental challenges currently faced by modern societies. These wastes are considered a serious global problem because of their effects on all forms of life. There is thus an urgent need to demonstrate effective eco-environmental techniques to overcome the hazardous environmental impacts of traditional disposal paths. However, our current knowledge on the prevailing mechanisms and the efficacy of synthetic plastics' biodegradation still appears limited. Under this scope, our review aims to comprehensively highlight the role of microbes, with special emphasis on algae, on the entire plastic biodegradation process focusing on the depolarization of various synthetic plastic types. Moreover, our review emphasizes on the ability of insects' gut microbial consortium to degrade synthetic plastic wastes. this website In this view, we discuss the schematic pathway of the biodegradation process of six types of synthetic plastics. These findings may contribute to establishing bio-upcycling processes of plastic wastes towards biosynthesis of valuable metabolic products. Finally, we discuss the challenges and opportunities for microbial valorization of degraded plastic wastes.Historical hard-rock mine activities have resulted in nearly half a million mining-impacted sites scattered around the US. Compared to conventional remediation, (aided) phytostabilization is generally cost-effective and ecologically productive approach, particularly for large-scale sites. Native species act to maintain higher local biodiversity, providing a foundation for natural ecological succession. Due to heterogeneity of mine waste, revegetation strategies are inconsistent in approach, and to avoid failure scenarios, greenhouse screening studies can identify candidate plants and amendment strategies before scaling up. This greenhouse study aimed to concurrently screen a variety of native species for their potential to revegetate Cu/Pb/Zn mine tailings and develop a high throughput and non-destructive approach utilizing computer vision and image-based phenotyping technologies to quantify plant responses. A total number of 34 species were screened in this study, which included 5 trees, 8 grasses, and 21 foreased the phenotypic data and offers a breakthrough in rapid, high throughput data collection to project site-specific phytostabilization strategies to efficiently restore mine-impacted sites.Brownification, caused by increasing dissolved organic carbon (DOC) concentrations is a threat to aquatic ecosystems over large areas in Europe. The increasing concentrations of DOC in northern boreal streams and lakes have attracted considerable attention with proposed important drivers such as climate, deposition and land-use, and complex interactions between them. Changes in total organic N (TON) concentrations have received less attention, even though carbon and nitrogen losses are highly related to each other. We used long-term (1990-2019) monitoring records of 12 small data-rich headwater forested catchments in a large gradient of climate and deposition. We found that total organic carbon (TOC) concentrations were significantly increasing in almost all study catchments. The mean air temperature and change in sulphate concentrations had a strong, significant correlation to TOC change-%. Both explained, alone, more than 65% of the change in TOC concentrations, and, together, up to 83% of the variation. Sulphur deposition has already decreased to low levels, our results indicate that its importance as a driver of TOC leaching has decreased but is still clearly detected, while the impact of climate warming as a driver of TOC leaching will be even more pronounced in the future. A positive correlation was found between drainage-% and increases in TON, suggesting also importance of land management. TON trends were tightly connected to changes in TOC, but not directly linked to decreasing S deposition.