About seller
Mortality only occurred in hens exposed to -10 and increased with longer duration. Cold exposure impacted meat quality, resulting in higher thigh pH and lower L∗ (lightness) and b∗ (yellowness). Prolonged exposure duration resulted in dehydration, indicated by blood physiology (hematocrit and hemoglobin) and live shrink. PF hens struggled with thermoregulation in -10, while WF hens struggled in 30/30 and 30/80. These results demonstrate that EOCH exposed at crate level to hot (+30) conditions experience thermal stress, while hens exposed to cold (-10) are unable to cope, compromising welfare and meat quality.The purpose of this study was to evaluate the effects of chitosan oligosaccharides (COS) on intestinal permeability, morphology, antioxidant status, and inflammatory response in heat-stressed broilers. A total of 108 thirty-five-day-old Chinese yellow-feather broilers (body weight 470.31 ± 13.15 g) were randomly allocated to 3 dietary treatments as follows CON group, basal diet and raised under normal temperature (24°C); HS group, basal diet and raised under cycle heat stress (34°C from 1000-1800 and 24°C for the rest time); HSC group, basal diet with 200 mg/kg COS supplementation and raised under cycle heat stress. Each treatment had 6 replication pens and 6 broilers per pen. https://www.selleckchem.com/products/su056.html Compared with the CON group, heat stress decreased (P less then 0.05) the relative weight of duodenum and jejunum; the relative length and villus height (VH) of duodenum, jejunum, and ileum; the ileum VH to crypt depth ratio; duodenum mucosal catalase (CAT) activity; and jejunum mucosal glutathione peroxidase (GSH-Px) and CAT activityontent.This study investigated the effect of feed and water access time on yolk sac utilization and subsequent broiler live performance. Hatching eggs were collected from commercial flocks of Ross 308 breeders at 35 and 39 wk of age in experiments 1 and 2, respectively. Chicks already out of their shells that still had some dampness on their down were removed, recorded, feather-sexed, and weighed at 488 h of incubation in both experiments. Chicks were weighed individually and received feed and water at 2 (immediate feed; IF), 8, 12, 16, 20, 24, 28, and 32 h after hatching (488 h) in experiments 1 and 2 (IF) and at 24, 26, 28, 32, 36, and 40 h after hatching in experiment 2. The residual yolk sac weight was determined at 32 and 40 h after hatching (day 0) in all groups in experiments 1 and 2, respectively. Feed consumption and BW were recorded at 7, 14, 21, and 35 d and at the same age relative to placement on feed and water at the end of the growing period. Mortality was recorded twice daily in both experiments. Feeperiod is more critical for broiler performance than the time of posthatch access to feed and water.Although a number of nongenetic factors have been reported to be able to modulate skeletal muscle phenotypes in meat-type birds, neither the underlying mechanisms nor the muscle group-specific phenotypic and molecular responses have been fully understood. In the present study, a total of 240 broiler ducks were used to compare the effects of floor raising system (FRS) and net raising system (NRS) on the physicochemical properties and global gene expression profiles of both breast and thigh muscles at the posthatching week 4 (W4), W8, and W13. Our results showed that compared with FRS, NRS generally induced higher pH, lower lightness (L∗) and yellowness (b∗), lower drip loss and cooking loss, and lower shear force in either breast or thigh muscles during early posthatching stages but subsequently showed less pronounced or even reverse effects. Meanwhile, it was observed that the raising system differently changed the myofiber characteristics depending on the muscle group and the developmental stage. Genome-widemechanisms behind meat quality but also provide novel insights into the molecular causes of the muscle group-specific adaptive remodeling in response to environmental stimuli.This study examined the effects of plastic antipecking devices (PAD) on the production performance, upper beak length, behavior, and plumage condition of a local Chinese chicken breed. Three hundred sixty 63-d-old Wannan chickens with intact beaks were randomly allocated into 3 groups. Birds were fitted with the PAD at 63 d (PAD63d) and at 77 d of age (PAD77d). Control birds were not fitted with PAD. The results showed that there were no significant effects of PAD on the BW, carcass traits, and meat quality (P > 0.05). The mortality in the PAD63d and PAD77d groups was lower than that in the control group. Compared with those in the PAD77d and control groups, the feed conversion ratio (FCR) from 63 to 112 d of age was lower in the PAD63d group. The ADFI of birds from 63 to 112 d of age was lowest in birds in the PAD63d group, intermediate in birds in the PAD77d group, and highest in control birds (P less then 0.05). Birds in the PAD63d and PAD77d groups showed a lower frequency of walking and running, a higher frequency of sleeping, and higher plumage scores of the back and tail than those of control birds (P less then 0.05). Birds' daily walking steps in the PAD77d group decreased compared with that of birds in the control group (P less then 0.05). The upper beak length at 91 d and 112 d of age was longest in birds in the PAD63d group and shortest in control birds (P less then 0.05). Overall, PAD appeared to be effective at reducing mortality, FCR, overall activity, and plumage damage and increasing the upper beak length.Based on research reports, feed characteristics can increase poult growth via several factors. Two rearing experiments (EXP) were conducted to test the effects of feed form and ingredient quality in turkey poults. Bird performance and the duodenum, jejunum, ileum, and cecum morphology were observed in both EXP. Poults were reared in battery cages (48 cages in EXP 1 and 72 cages in EXP 2). Four dietary treatments with differing feed form and function factors were evaluated in EXP 1. A completely randomized block design with a 2 × 2 × 2 factorial arrangement of treatments consisting of 2 levels of fines, 2 soybean meal (SBM) sources, and 2 levels of an enzyme cocktail (Rovabio Advance) was tested in EXP 2. Poult BW, BW gain (BWG), feed intake (FI), and feed conversion ratio (FCR) were determined in both EXP. Apparent metabolizable energy corrected for nitrogen (AMEn) was determined in EXP 2. Differences were considered to be statistically significant at P ≤ 0.05. Feeding increased feed crumble particle size with fewer fines in the starter feed resulted in an increased BWG accompanied by an increased FI.