About seller
Polyphenols are an important family of molecules of vegetal origin present in many medicinal and edible plants, which represent important alimentary sources in the human diet. Polyphenols are known for their beneficial health effects and have been investigated for their potential protective role against various pathologies, including cancer, brain dysfunctions, cardiovascular diseases and stroke. The prevention of stroke promoted by polyphenols relies mainly on their effect on cardio- and cerebrovascular systems. However, a growing body of evidence from preclinical models of stroke points out a neuroprotective role of these molecules. Notably, in many preclinical studies, the polyphenolic compounds were effective also when administered after the stroke onset, suggesting their possible use in promoting recovery of patients suffering from stroke. Here, we review the effects of the major polyphenols in cellular and in vivo models of both ischemic and hemorrhagic stroke in immature and adult brains. The results from human studies are also reported.Differences in the gut microbial content of Lutzomyia (Lu.) ayacuchensis, a primary vector of Andean-type cutaneous leishmaniasis in Ecuador and Peru, may influence the susceptibility of these sand flies to infection by Leishmania. As a first step toward addressing this hypothesis, a comparative analysis of bacterial and fungal compositions from Lu. ayacuchensis populations with differential susceptibilities to Leishmania was performed. Bacterial 16S rRNA gene amplification and Illumina MiSeq sequencing approaches were used to characterize the bacterial composition in wild-caught populations from the Andean areas of Ecuador and southern Peru at which the sand fly species transmit Leishmania (Leishmania) mexicana and Leishmania (Viannia) peruviana, respectively, and a population from the northern Peruvian Andes at which the transmission of Leishmania by Lu. ayacuchensis has not been reported. In the present study, 59 genera were identified, 21 of which were widely identified and comprised more than 95% of all ns in this important vector.Caffeic acid (CA) and its derivatives caffeic acid phenethyl ester (CAPE) and chlorogenic acid (CGA) are phenolic compounds of plant origin with a wide range of biological activities. Protein Tyrosine Kinase inhibitor Here, we identify and characterize their inhibitory properties against human cathepsins B and L, potent, ubiquitously expressed cysteine peptidases involved in protein turnover and homeostasis, as well as pathological conditions, such as cancer. We show that CAPE and CGA inhibit both peptidases, while CA shows a preference for cathepsin B, resulting in the strongest inhibition among these combinations. All compounds are linear (complete) inhibitors acting via mixed or catalytic mechanisms. Cathepsin B is more strongly inhibited at pH 7.4 than at 5.5, and CA inhibits its endopeptidase activity preferentially over its peptidyl-dipeptidase activity. Altogether, the results identify the CA scaffold as a promising candidate for the development of cathepsin B inhibitors, specifically targeting its endopeptidase activity associated with pathological proteolysis of extracellular substrates.Four polyene macrolactams including the previously reported niizalactam C (4), and three new ones, streptolactams A-C (1-3) with a 26-membered monocyclic, [4,6,20]-fused tricyclic and 11,23-oxygen bridged [14,16]-bicyclic skeletons, respectively, were isolated from the fermentation broth of the deep-sea sediment-derived Streptomyces sp. OUCMDZ-3159. Their structures were determined based on spectroscopic analysis, X-ray diffraction analysis, and chemical methods. The abiotic formation of compounds 2 and 4 from compound 1 were confirmed by a series of chemical reactions under heat and light conditions. Compounds 1 and 3 showed a selective antifungal activity against Candida albicans ATCC 10231.Obesity has become a global medical problem. The upregulation of senescence-related markers in adipose tissue may cause impairment of adipose tissue and disorders of systemic metabolism. Weight control through diet has been found to ameliorate senescence in the adipose tissue. Exercise is also important in maintaining a healthy lifestyle, however, very few researchers have examined the relationship between senescence-related markers in adipose tissue. Dietary restriction is also reported to have a legacy effect, wherein the effects are maintained for some periods after the termination of the intervention. However, very few researchers have examined the relationship between exercise and senescence-related markers in adipose tissue. Besides, there is no study on the long-term effects of exercise. Hence, we investigated whether the exercise could change the expression of senescence-related genes in the visceral adipose tissue of young mice and whether there was a legacy effect of exercise for 10 weeks after the termination of exercise. Four-week-old male ICR mice were assigned to one of the three groups 20 weeks of sedentary condition, 20 weeks of voluntary wheel running exercise, or 10 weeks of exercise followed by 10 weeks of sedentary condition. The mice showed decreased expression in genes related to senescence and senescence-associated secretory phenotype, such as p53, p16, and IL-6, in the visceral adipose tissue in response to exercise. These effects were maintained for 10 weeks after the mice stopped exercising. Our study is the first report that exercise reduces the expression of senescence-related genes in the visceral adipose tissue of young mice, and that exercise causes the legacy effect.A thin-film superconductor(S)/ferromagnet(F) F1/S/F2-type Pd0.96Fe0.04(20 nm)/VN(30 nm)/Pd0.92Fe0.08(12 nm) heteroepitaxial structure was synthesized on (001)-oriented single-crystal MgO substrate utilizing a combination of the reactive magnetron sputtering and the molecular-beam epitaxy techniques in ultrahigh vacuum conditions. The reference VN film, Pd0.96Fe0.04/VN, and VN/Pd0.92Fe0.08 bilayers were grown in one run with the target sample. In-situ low-energy electron diffraction and ex-situ X-ray diffraction investigations approved that all the Pd1-xFex and VN layers in the series grew epitaxial in a cube-on-cube mode. Electric resistance measurements demonstrated sharp transitions to the superconducting state with the critical temperature reducing gradually from 7.7 to 5.4 K in the sequence of the VN film, Pd0.96Fe0.04/VN, VN/Pd0.92Fe0.08, and Pd0.96Fe0.04/VN/Pd0.92Fe0.08 heterostructures due to the superconductor/ferromagnet proximity effect. Transition width increased in the same sequence from 21 to 40 mK.