About seller
Recent advances in therapeutics coupled with steady improvements in supportive care for patients with acute myeloid leukemia (AML) have led to improved outcomes. Despite these advances, even in patients that achieve a complete remission with initial therapy high rates of relapse remain a clinical dilemma. For decades, investigators have attempted strategies of maintenance therapy to prolong both remission duration and overall survival in patients with AML. These approaches have included cytotoxic chemotherapy, immunotherapy, hypomethylating agents, and targeted small molecule therapy. Overall, the evidence in favor of maintenance therapy is limited. Recent strategies, especially with hypomethylating agents have begun to show promise as maintenance therapy in improving clinical outcomes. Ongoing and future studies will continue to elucidate the true role for maintenance therapy options in patients with AML. In this review we summarize prior and ongoing maintenance therapy approaches in AML and highlight some of the most promising strategies.Cachexia is a syndrome that affects the entire organism and presents a variable plethora of symptoms in patients, always associated with continuous and involuntary degradation of skeletal muscle mass and function loss. In cancer, this syndrome occurs in 50% of all patients, while prevalence increases to 80% as the disease worsens, reducing quality of life, treatment tolerance, therapeutic response, and survival. Both chronic systemic inflammation and immunosuppression, paradoxically, correspond to important features in cachexia patients. Systemic inflammation in cachexia is fueled by the interaction between tumor and peripheral tissues with significant involvement of infiltrating immune cells, both in the peripheral tissues and in the tumor itself. Autophagy, as a process of regulating cellular metabolism and homeostasis, can interfere with the metabolic profile in the tumor microenvironment. Under a scenario of balanced autophagy in the tumor microenvironment, the infiltrating immune cells control cytokine pnt and the consequences eliciting the development of cancer cachexia.During the last years, preclinical and clinical studies have emerged supporting the rationale to integrate radiotherapy and immunotherapy. Radiotherapy may enhance the effects of immunotherapy by improving tumor antigen release, antigen presentation, and T-cell infiltration. Recently, magnetic resonance guided radiotherapy (MRgRT) has become clinically available. Compared to conventional radiotherapy techniques, MRgRT firstly allows for daily on-table treatment adaptation, which enables both dose escalation for increasing tumor response and superior sparing of radiosensitive organs-at-risk for reducing toxicity. The current review focuses on the potential of combining MR-guided adaptive radiotherapy with immunotherapy by providing an overview on the current status of MRgRT, latest developments in preclinical and clinical radio-immunotherapy, and the unique opportunities and challenges for MR-guided radio-immunotherapy. MRgRT might especially assist in answering open questions in radio-immunotherapy regarding optimal radiation dose, fractionation, timing of immunotherapy, appropriate irradiation volumes, and response prediction.Obesity and type 2 diabetes have both been associated with increased cancer risk and are becoming increasingly prevalent. Metabolic abnormalities such as insulin resistance and dyslipidemia are associated with both obesity and type 2 diabetes and have been implicated in the obesity-cancer relationship. Multiple mechanisms have been proposed to link obesity and diabetes with cancer progression, including an increase in insulin/IGF-1 signaling, lipid and glucose uptake and metabolism, alterations in the profile of cytokines, chemokines, and adipokines, as well as changes in the adipose tissue directly adjacent to the cancer sites. This review aims to summarize and provide an update on the epidemiological and mechanistic evidence linking obesity and type 2 diabetes with cancer, focusing on the roles of insulin, lipids, and adipose tissue.Glioblastoma multiforme (GBM) is the most common primary brain malignancy and is often resistant to conventional treatments due to its extensive cellular heterogeneity. Thus, the overall survival of GBM patients remains extremely poor. Insulin-like growth factor (IGF) signaling entails a complex system that is a key regulator of cell transformation, growth and cell-cycle progression. Hence, its deregulation is frequently involved in the development of several cancers, including brain malignancies. In GBM, differential expression of several IGF system components and alterations of this signaling axis are linked to significantly worse prognosis and reduced responsiveness to temozolomide, the most commonly used pharmacological agent for the treatment of the disease. AZD0156 ATM inhibitor In the present review we summarize the biological role of the IGF system in the pathogenesis of GBM and comprehensively discuss its clinical significance and contribution to the development of resistance to standard chemotherapy and experimental treatments. Combination therapy with immune checkpoint inhibitors (ICIs) and antiangiogenic agents is generally effective and well tolerated and might be effective for metastatic urothelial carcinoma (UC). However, ICI treatment is often associated with unique responses, such as pseudoprogression and ICI-related pneumonitis (CIP), which may influence clinical decision making and affect treatment. Although there have been many studies on the mechanism of pseudoprogression and CIP, the characteristics and relationship of these special events in a clinical setting remainrarely reported. Here, we present a patient with lung metastatic UC who underwent surgery and two lines of chemotherapy. The programmed cell death-1 (PD-1) inhibitor nivolumab and antiangiogenics agent bevacizumab were used asmaintenancetreatments. The patient experienced pseudoprogression after 2 PD-1 inhibitor cycles. The lesions in both lungs were enlarged on computed tomography (CT) imaging, and treatments were continued for another two cycles, after which the tumor size decreased to below baseline, followed by a durable response.