About seller
Various therapeutic interventions have been studied and found to be effective in reducing the stereotypical behaviors of children with autism spectrum disorder (ASD). There has been increasing interest in using animal-assisted interventions (AAIs) as an alternative approach to therapeutic rehabilitation for children with ASD, and many studies have reported that AAI has significant benefits for the cognitive, psychological, and social behavior of children with ASD. The present study was designed to examine the effects of a 16 weeks therapeutic horseback riding program on social interaction and communication skills in children with autism. Eighty-four children diagnosed with ASD, aged between 6 and 12 years old, were recruited for this study. All selected participants met the DSM-V criteria, and a total of sixty-one participants (N = 61) completed the study. A quasi-experimental design with an experimental group and control group was implemented for this study, taking measurements at pre-test, interim-test, and post-test to monitor the behavior changes in social and communication throughout the 16-week intervention. Repeated measures ANOVA and the independent sample t-test were used for data analysis, to assess the difference between the experimental group and control group. The results indicated that the THR program had positive influences on overall social skills and communication, based on the SSIS and the ABLLS-R scores, compared to the control group (p less then 0.05). A notable improvement in the overall social interaction score was observed from the interim-testing point to post-test. selleck In addition, participants in the therapeutic horseback riding (THR) group achieved significant improvements on six out of seven items in their communication evaluations. In conclusion, after 16 weeks of intervention, the THR program significantly enhanced the subdomains of social and communication skills in the areas of social interaction, communication, responsibility, and self-control, compared to the control group.Pancreatic ductal adenocarcinoma (PDAC) is known as a highly aggressive malignant disease. Prognosis for patients is notoriously poor, despite improvements in surgical techniques and new (neo)adjuvant chemotherapy regimens. Early detection of PDAC may increase the overall survival. It is furthermore foreseen that precision medicine will provide improved prognostic stratification and prediction of therapeutic response. In this review, omics-based discovery efforts are presented that aim for novel diagnostic and prognostic biomarkers of PDAC. For this purpose, we systematically evaluated the literature published between 1999 and 2020 with a focus on protein- and protein-glycosylation biomarkers in pancreatic cancer patients. Besides genomic and transcriptomic approaches, mass spectrometry (MS)-based proteomics and glycomics of blood- and tissue-derived samples from PDAC patients have yielded new candidates with biomarker potential. However, for reasons discussed in this review, the validation and clinical translation of these candidate markers has not been successful. Consequently, there has been a change of mindset from initial efforts to identify new unimarkers into the current hypothesis that a combination of biomarkers better suits a diagnostic or prognostic panel. With continuing development of current research methods and available techniques combined with careful study designs, new biomarkers could contribute to improved detection, prognosis, and prediction of pancreatic cancer.Glucagon-like peptide-1 (GLP-1), an incretin hormone, plays an important role in regulating glucose homeostasis. In this study, the applicability of circulating GLP-1 levels as an early indicator of metabolic syndrome (MetS) risk was examined. Women without diagnosed diseases were grouped according to their number of MetS risk factors (MetS RFs) (no RFs as Super-healthy, n = 61; one or two RFs as MetS risk carriers, n = 60; 3 ≤ RFs as MetS, n = 19). The circulating GLP-1 levels and homeostasis model assessment insulin resistance (HOMA-IR) scores were significantly higher in the MetS group than in the other two groups. The GLP-1 levels correlated positively with adiposity, HOMA-IR, blood pressure, and high sensitivity C-reactive protein (hs-CRP), but not with fasting glucose and lipid profiles, whose significances were maintained after adjustments for age, smoking and drinking habits, menopausal status, and total calorie intake. The GLP-1 levels also increased proportionally with the number of MetS RFs. In the MetS group, the GLP-1 levels were much higher in individuals with obesity (body mass index ≥ 25 kg/m2). In conclusion, the circulating GLP-1 level may be applicable as a potential early indicator of MetS risk in women without diagnosed diseases. Further study with a large population is needed to confirm the conclusion.The effects of sun exposure on the skin and specifically those related to pigmentation disorders are well known. It has recently been shown that blue light leads to the induction of oxidative stress and long-lasting pigmentation. The protective effect of an aqueous extract of Polypodium leucotomos (Fernblock®) is known. Our aim was to investigate the action mechanism of Fernblock® against pigmentation induced by blue light from digital devices. Human fibroblasts (HDF) and murine melanocytes (B16-F10) were exposed to artificial blue light (a 400-500 nm LED lamp). Cell viability, mitochondrial morphology, and the expression of the mitogen-activated protein kinase (MAPK) p38, known markers involved in the melanogenesis pathway, were evaluated. The activation of Opsin-3, a membrane protein sensitive to blue light that triggers the activation of the enzyme tyrosinase responsible for melanogenesis in melanocytes, was also analyzed. Our results demonstrated that pretreatment with Fernblock® prevents cell death, alteration of mitochondrial morphology, and phosphorylation of p38 in HDF exposed to blue light. In addition, Fernblock® significantly reduced the activation of Opsin-3 in melanocytes and the photo-oxidation of melanin, preventing its photodegradation. In sum, Fernblock® exerts beneficial effects against the detrimental impact of blue light from digital devices and could prevent early photoaging, while maintaining skin homeostasis.