About seller
In this paper, we develop new techniques for monitoring image processes under a fairly general setting with spatially correlated pixels in the image. Monitoring and handling the pixels directly is infeasible due to an extremely high image resolution. To overcome this problem, we suggest control charts that are based on regions of interest. The regions of interest cover the original image which leads to a dimension reduction. Nevertheless, the data are still high-dimensional. We consider residual charts based on the generalized likelihood ratio approach. Existing control statistics typically depend on the inverse of the covariance matrix of the process, involving high computing times and frequently generating instable results in a high-dimensional setting. As a solution of this issue, we suggest two further control charts that can be regarded as modifications of the generalized likelihood ratio statistic. Within an extensive simulation study, we compare the newly proposed control charts using the median run length as a performance criterion.3D object recognition is one of the most important tasks in 3D data processing, and has been extensively studied recently. Researchers have proposed various 3D recognition methods based on deep learning, among which a class of view-based approaches is a typical one. However, in the view-based methods, the commonly used view pooling layer to fuse multi-view features causes a loss of visual information. To alleviate this problem, in this paper, we construct a novel layer called Dynamic Routing Layer (DRL) by modifying the dynamic routing algorithm of capsule network, to more effectively fuse the features of each view. Concretely, in DRL, we use rearrangement and affine transformation to convert features, then leverage the modified dynamic routing algorithm to adaptively choose the converted features, instead of ignoring all but the most active feature in view pooling layer. We also illustrate that the view pooling layer is a special case of our DRL. In addition, based on DRL, we further present a Dynamic Routing Convolutional Neural Network (DRCNN) for multi-view 3D object recognition. Our experiments on three 3D benchmark datasets show that our proposed DRCNN outperforms many state-of-the-arts, which demonstrates the efficacy of our method.Classifying multi-temporal scene land-use categories and detecting their semantic scene-level changes for remote sensing imagery covering urban regions could straightly reflect the land-use transitions. Existing methods for scene change detection rarely focus on the temporal correlation of bi-temporal features, and are mainly evaluated on small scale scene change detection datasets. In this work, we proposed a CorrFusion module that fuses the highly correlated components in bi-temporal feature embeddings. We first extract the deep representations of the bi-temporal inputs with deep convolutional networks. Then the extracted features will be projected into a lower-dimensional space to extract the most correlated components and compute the instance-level correlation. The cross-temporal fusion will be performed based on the computed correlation in CorrFusion module. The final scene classification results are obtained with softmax layers. In the objective function, we introduced a new formulation to calculate the temporal correlation more efficiently and stably. The detailed derivation of backpropagation gradients for the proposed module is also given. Besides, we presented a much larger scale scene change detection dataset with more semantic categories and conducted extensive experiments on this dataset. The experimental results demonstrated that our proposed CorrFusion module could remarkably improve the multi-temporal scene classification and scene change detection results.Adaptive stochastic gradient descent, which uses unbiased samples of the gradient with stepsizes chosen from the historical information, has been widely used to train neural networks for computer vision and pattern recognition tasks. This paper revisits the theoretical aspects of two classes of adaptive stochastic gradient descent methods, which contain several existing state-of-the-art schemes. We focus on the presentation of novel findings In the general smooth case, the nonergodic convergence results are given, that is, the expectation of the gradients' norm rather than the minimum of past iterates is proved to converge; We also studied their performances under Polyak-Łojasiewicz property on the objective function. In this case, the nonergodic convergence rates are given for the expectation of the function values. Our findings show that more substantial restrictions on the steps are needed to guarantee the nonergodic function values' convergence (rates).Pedestrian detection methods have been significantly improved with the development of deep convolutional neural networks. Nevertheless, detecting ismall-scaled pedestrians and occluded pedestrians remains a challenging problem. this website In this paper, we propose a pedestrian detection method with a couple-network to simultaneously address these two issues. One of the sub-networks, the gated multi-layer feature extraction sub-network, aims to adaptively generate discriminative features for pedestrian candidates in order to robustly detect pedestrians with large variations on scale. The second sub-network targets on handling the occlusion problem of pedestrian detection by using deformable regional region of interest (RoI)-pooling. We investigate two different gate units for the gated sub-network, namely, the channel-wise gate unit and the spatio-wise gate unit, which can enhance the representation ability of the regional convolutional features among the channel dimensions or across the spatial domain, repetitively. Ablation studies have validated the effectiveness of both the proposed gated multi-layer feature extraction sub-network and the deformable occlusion handling sub-network. With the coupled framework, our proposed pedestrian detector achieves promising results on both two pedestrian datasets, especially on detecting small or occluded pedestrians. On the CityPersons dataset, the proposed detector achieves the lowest missing rates (i.e. 40.78% and 34.60%) on detecting small and occluded pedestrians, surpassing the second best comparison method by 6.0% and 5.87%, respectively.