About seller
In this work, we designed and fabricated a multifunctional nanocomposite system that consists of chitosan, raspberry-like silver nanoparticles, and graphene oxide. The room temperature atmospheric pressure microplasma (RT-APM) process provides a rapid, facile, and environmentally-friendly method for introducing silver nanoparticles into the composite system. Our composite can achieve a pH controlled single and/or dual drug release. Under pH 7.4 for methyl blue loaded on chitosan, the drug release profile features a burst release during the first 10 h, followed by a more stabilized release of 70-80% after 40-50 h. For fluorescein sodium loaded on graphene oxide, the drug release only reached 45% towards the end of 240 h. When the composite acted as a dual drug release system, the interaction of fluorescein sodium and methyl blue slowed down the methyl blue release rate. Under pH 4, both single and dual drug systems showed a much higher release rate. In addition, our composite system demonstrated strong antibacterial abilities against E. GSK2126458 price coli and S. aureus, as well as an excellent photothermal conversion effect under irradiation of near infrared lasers. The photothermal conversion efficiency can be controlled by the laser power. These unique functionalities of our nanocomposite point to its potential application in multiple areas, such as multimodal therapeutics in healthcare, water treatment, and anti-microbials, among others.The interleukin (IL)-6 family of cytokines and exaggerated signal transducer and activator of transcription (STAT)3 signaling is implicated in idiopathic pulmonary fibrosis (IPF) pathogenesis, but the mechanisms regulating STAT3 expression and function are unknown. Suppressor of cytokine signaling (SOCS)1 and SOCS3 block STAT3, and low SOCS1 levels have been reported in IPF fibroblasts and shown to facilitate collagen production. Fibroblasts and lung tissue from IPF patients and controls were used to examine the mechanisms underlying SOCS1 down-regulation in IPF. A significant reduction in basal SOCS1 mRNA in IPF fibroblasts was confirmed. However, there was no difference in the kinetics of activation, and methylation of SOCS1 in control and IPF lung fibroblasts was low and unaffected by 5'-aza-2'-deoxycytidine' treatment. SOCS1 is a target of microRNA-155 and although microRNA-155 levels were increased in IPF tissue, they were reduced in IPF fibroblasts. Therefore, SOCS1 is not regulated by SOCS1 gene methylation or microRNA155 in these cells. In conclusion, we confirmed that IPF fibroblasts had lower levels of SOCS1 mRNA compared with control fibroblasts, but we were unable to determine the mechanism. Furthermore, although SOCS1 may be important in the fibrotic process, we were unable to find a significant role for SOCS1 in regulating fibroblast function.The Zika virus (ZIKV) is a mosquito-borne member of the Flaviviridae family of enveloped RNA viruses. The correlation between viral infection and fetal microcephaly was revealed in 2015, yet we still lack a vaccine against ZIKV. Here, we present a genetic vaccine that delivers the premembrane (prM) and envelope (E) genes of ZIKV using a recombinant baculovirus vector that expresses a human endogenous retrovirus (HERV) envelope on its surface to enhance gene delivery. We observed that baculoviruses with HERV envelopes (AcHERV) exhibited specifically higher gene transfer efficiency in human cells compared to the wild-type baculovirus vector. Using the AcHERV baculovirus vector, we constructed a recombinant baculovirus vaccine encoding ZIKV prM/E genes (AcHERV-ZIKV), which are major targets of neutralizing antibodies. Mice immunized twice with AcHERV-ZIKV exhibited high levels of IgG, neutralizing antibodies, and IFN-γ. In challenge tests in IFN knock-out mice (A129), AcHERV-ZIKV showed complete protection in both challenge and pregnancy tests. These results suggest that AcHERV-ZIKV could be a potential vaccine candidate for human application.Gut microbiome contributes to host health by maintaining homeostasis, increasing digestive efficiency, and facilitating the development of the immune system. Manipulating gut microbiota is being recognized as a therapeutic target to manage various chronic diseases. The therapeutic manipulation of the intestinal microbiome is achieved through diet modification, the administration of prebiotics, probiotics, or antibiotics, and more recently, fecal microbiome transplantation (FMT). In this opinion paper, we give a perspective on the current status of application of multi-omics technologies in the analysis of host-microbiota interactions. The aim of this paper was to highlight the strengths of metaproteomics, which integrates with and often relies on other approaches.Hydrogen-bonded organic frameworks (HOFs) are the focus of intense scientific research due their potential applications in science and technology. Here, we report on the synthesis, characterization, and photobehavior of a new HOF (T12F-1(124TCB)) based on a dehydrobenzoannulene derivative containing fluorine atoms (T12F-COOH). This HOF exhibits a 2D porous sheet, which is hexagonally networked via H-bonds between the carboxylic groups, and has an interlayers distance (4.3 Å) that is longer than that of a typical π-π interaction. The presence of the fluorine atoms in the DBA molecular units largely increases the emission quantum yield in DMF (0.33, T12F-COOH) when compared to the parent compound (0.02, T12-COOH). The time-resolved dynamics of T12F-COOH in DMF is governed by the emission from a locally excited state (S1, ~ 0.4 ns), a charge-transfer state (S1(CT), ~ 2 ns), and a room temperature emissive triplet state (T1, ~ 20 ns), in addition to a non-emissive triplet structure with a charge-transfer character (T1(CT), τ = 0.75 µs). We also report on the results using T12F-ester. Interestingly, FLIM experiments on single crystals unravel that the emission lifetimes of the crystalline HOF are almost twice those of the amorphous ones or the solid T12F-ester sample. This shows the relevance of the H-bonds in the photodynamics of the HOF and provides a strong basis for further development and study of HOFs based on DBAs for potential applications in photonics.