About seller
Non-symmetric ligands, such as dipicolylamine-TTZ and monopicolylamine-TTZ, are comparatively more recent than the symmetric ones. They allow in principle the preparation of mononuclear complexes in a controlled manner, although binuclear complexes have been isolated as well. Moreover, in the monopicolylamine-TTZ-Cl ligand, deprotonation of the amine, thanks to the electron acceptor character of TTZ, afforded a negatively charged ligand equivalent of a guanidinate.Colorful solar cells have been much sought after because they can generate electricity and concurrently satisfy ornamentation purposes. Owing to their outstanding power conversion efficiency and flexibility in processing, perovskite solar cells (PSCs) have the great potential to become both efficient and aesthetically appealing. Here, we specially devise and fabricate two novel electron transport layers (ETLs) for PSCs with two-dimensional (2D) photonic crystal structures, namely the 2D inverse opal (IO) structured SnO2 (IOS) and SnO2-TiO2 composite (IOST), using the template-assisted spin-coating method. The synergistic structure and material modifications to the ETLs lead to a number of unique features, including the remarkable electron transfer ability, vivid colors and good protection to the infiltrated perovskite films. Furthermore, the IOS and IOST ETLs are effectively incorporated into the CH3NH3PbI3-based PSC devices that deliver the best efficiency of 16.8% with structural colors.As the complications of atherosclerosis such as myocardial infarction and stroke are still one of the leading causes of mortality worldwide, the development of new diagnostic tools for the early detection of plaque instability and thrombosis is urgently needed. Gambogic Advanced molecular imaging probes based on functional nanomaterials in combination with cutting edge imaging techniques are now paving the way for novel and unique approaches to monitor the inflammatory progress in atherosclerosis. This review focuses on the development of various molecular probes for the diagnosis of plaques and thrombosis in atherosclerosis, along with perspectives of their diagnostic applications in cardiovascular diseases. Specifically, we summarize the biological targets that can be used for atherosclerosis and thrombosis imaging. Then we describe the emerging molecular imaging techniques based on the utilization of engineered nanoprobes together with their challenges in clinical translation.We report on a transport measurement study of top-gated field effect transistors made out of InSb nanowires grown by chemical vapor deposition. The transistors exhibit ambipolar transport characteristics revealed by three distinguished gate-voltage regions In the middle region where the Fermi level resides within the bandgap, the electrical resistance shows an exponential dependence on temperature and gate voltage. With either more positive or negative gate voltages, the devices enter the electron and hole transport regimes, revealed by the resistance decreasing linearly with decreasing temperature. From the transport measurement data of a 1 μm-long device made from a nanowire of 50 nm in diameter, we extracted a bandgap energy of 190-220 meV. The off-state current of this device is found to be suppressed within the measurement noise at a temperature of T = 4 K. A shorter, 260 nm-long device is found to exhibit a finite off-state current and a circumference-normalized on-state hole current of 11 μA μm-1 at VD = 50 mV which is the highest for such a device to our knowledge. The ambipolar transport characteristics make the InSb nanowires attractive for CMOS electronics, hybrid electron-hole quantum systems and hole based spin qubits.Ultrathin zinc phthalocyanine/graphene/BiVO4 heterojunctions have been successfully synthesized for efficient wide visible-light catalytic conversion of CO2 to CO with 14-time photoactivity improvement compared to the bare BiVO4 nanosheet, attributed to the strengthened Z-scheme charge transfer and separation by increasing the optimized amount of highly dispersed ZnPc via the pre-modified graphene-modulated assembly.A method based on molecular dynamics simulations which employ two distinct levels of theory is proposed and tested for the prediction of Gibbs free energies of solvation for non-ionic solutes in water. The method consists of two additive contributions (i) an evaluation of the free energy of solvation predicted by a computationally efficient molecular mechanics (MM) method; and (ii) an evaluation of the free energy difference between the potential energy surface of the MM method and that of a more computationally intensive first-principles quantum-mechanical (QM) method. The latter is computed by a thermodynamic integration method based on a series of shorter molecular dynamics simulations that employ weighted averages of the QM and MM force evaluations. The combined computational approach is tested against the experimental free energies of aqueous solvation for four solutes. For solute-solvent interactions that are found to be described qualitatively well by the MM method, the QM correction makes a modest improvement in the predicted free energy of aqueous solvation. However, for solutes that are found to not be adequately described by the MM method, the QM correction does not improve agreement with experiment. These preliminary results provide valuable insights into the novel concept of implementing thermodynamic integration between two model chemistries, suggesting that it is possible to use QM methods to improve upon the MM predictions of free energies of aqueous solvation.Light guidance is a convenient and versatile way to control the positions of phototactic microorganisms. However, the illumination strategies require adaption to the respective organism. We report on the generation of structures composed of the gliding and exopolysaccharide-secreting algae Porphyridium purpureum via their photomovement. Light patterns from a two-dimensional computer-generated hologram were projected onto inoculated agar plates. The obtained pixelated algae patterns were evaluated with regard to the illuminated intensity, contrast and pixel size. Upper and lower thresholds for algae accumulation were determined, allowing to enhance future manipulation of phototactic microorganisms.