About seller
Major histocompatibility complex-II (MHC-II)-Associated Peptide Proteomics (MAPPs) is a mass spectrometry-based approach to identify and relatively quantitate naturally processed and presented MHC-II-associated peptides that can potentially activate T cells and contribute to the immunogenicity of a drug. Acceptance of the MAPPs technology as an appropriate preclinical (and potentially clinical) immunogenicity risk assessment tool depends not only on its technical stability and robustness but also on the ability to compare results across experiments and donors. To this end, we developed a specialized MAPPs data processing pipeline, dataMAPPs, which presents complex mass spectrometric data sets in the form of heat maps (heatMAPPs), enabling rapid and convenient comparison between conditions and donors. A customized normalization procedure based on identified endogenous peptides standardizes signal intensities within and between donors and enables cross-experimental comparison. We evaluated the technical reproducibility of the MAPPs platform using tool compounds with respect to the most prominent experimental factors and found that the systematic biological differences across donors by far outweighed any technical source of variation. We illustrate the capability of the MAPPs platform to generate data that may be used for preclinical risk assessment of drug-induced immunogenicity and discuss its applicability in the clinics.Rheumatoid arthritis (RA), a chronic systemic autoimmune disease, is mainly characterized by joint lesions and permanent loss of joint function. To discover the metabolic characteristics of RA and the underlying mechanisms in treatment with geniposide (GE), untargeted metabolomic analysis based on hydrophilic interaction liquid chromatography coupled to high-resolution mass spectrometry (HILIC-HRMS) was performed using the joint synovial fluid samples from adjuvant arthritis (AA) rats. Microdialysis (MD) was utilized to collect the dialysate samples precisely from the articular cavity of AA rats. Multivariate statistical analysis was then conducted to discover the metabolite changes induced by AA and to differentiate GE-related biomarkers. The mass spectrometry data are available on the Chorus website (https//chorusproject.org/pages/index.html) with the data set identifier 1680. The results showed that 20 metabolites differed significantly between AA rats and normal rats. GE treatment recovered the altered levels of the 13 metabolites mentioned above, such as palmitoylethanolamide (PEA), Cer (d180/220), and PC (181(11Z)/161(9Z)), and normalized glycerophospholipid metabolism. As evidenced by western blotting, the changes in PEA levels adjusted by GE were associated with the down-regulated expression of N-acylethanolamine-hydrolyzing acid amidase (NAAA) in synovial tissues. Taken together, the elucidation of metabolic changes of joint synovial fluid and how this is influenced by GE will promote future therapeutic interventions of RA.Population genetic studies highlight a missense variant (G398S) of A1CF that is strongly associated with higher levels of blood triglycerides (TGs) and total cholesterol (TC). Functional analyses suggest that the mutation accelerates the secretion of very low-density lipoprotein (VLDL) from the liver by an unknown mechanism. Here, we used multiomics approaches to interrogate the functional difference between the WT and mutant A1CF. Using metabolomics analyses, we captured the cellular lipid metabolite changes induced by transient expression of the proteins, confirming that the mutant A1CF is able to relieve the TG accumulation induced by WT A1CF. Using a proteomics approach, we obtained the interactomic data of WT and mutant A1CF. ABT-199 molecular weight Networking analyses show that WT A1CF interacts with three functional protein groups, RNA/mRNA processing, cytosolic translation, and, surprisingly, mitochondrial translation. The mutation diminishes these interactions, especially with the group of mitochondrial translation. Differential analyses show that the WT A1CF-interacting proteins most significantly different from the mutant are those for mitochondrial translation, whereas the most significant interacting proteins with the mutant are those for cytoskeleton and vesicle-mediated transport. RNA-seq analyses validate that the mutant, but not the WT, A1CF increases the expression of the genes responsible for cellular transport processes. On the contrary, WT A1CF affected the expression of mitochondrial matrix proteins and increased cell oxygen consumption. Thus, our studies confirm the previous hypothesis that A1CF plays broader roles in regulating gene expression. The interactions of the mutant A1CF with the vesicle-mediated transport machinery provide mechanistic insight in understanding the increased VLDL secretion in the A1CF mutation carriers.Previous analyses have revealed that benzenoid rings are prevalent scaffolds in active pharmaceutical ingredients (APIs). Here, we analyze the substitution patterns of benzenoid rings in small molecule APIs approved by the FDA through 2019 and show that only a few substitution patterns (1-, 1,2-, 1,4-, and 1,2,4-) prevail, and the distribution has remained relatively constant over time. We postulate the connection between available synthetic methods and the occurrence of a few benzenoid substitution patterns by providing an overview of synthetic methods that elaborate existing substitution patterns and those that create new substitution patterns, including those of the former that are favored by medicinal chemists. Finally, we calculated medicinal chemistry properties of benzenoid containing APIs that are often used by practitioners as design elements, including "druglikeness", shape, complexity, and similarity/diversity and discuss these properties in the context of synthesis.Delicate control over architectures via crystallization-driven self-assembly (CDSA) in aqueous solution, particularly combined with external stimuli, is rare and challenging. Here, we report a stepwise CDSA process thermally initiated from amphiphilic poly(N-allylglycine)-b-poly(N-octylglycine) (PNAG-b-PNOG) conjugated with thiol-terminated triethylene glycol monomethyl ethers ((PNAG-g-EG3)-b-PNOG) in aqueous solution. The diblock copolymers show a reversible thermoresponsive behavior with nearly identical cloud points in both heating and cooling runs. In contrast, the morphology transition of the assemblies is irreversible upon a heating-cooling cycle because of the presence of a confined domain arising from crystalline PNOG, which allows for the achievement of different nanostructured assemblies by the same polymer. We demonstrated that the thermoresponsive property of PNAG-g-EG3 initiates assembly kinetically that is subsequently promoted by crystallization of PNOG thermodynamically. The irreversible morphology transition behavior provides a convenient platform for comparing the cellular uptake efficiency of nanostructured assemblies with various morphologies that are otherwise similar.