About seller
Nuclear envelope budding in herpesvirus nuclear egress may be negatively regulated, since the pUL31/pUL34 nuclear egress complex heterodimer can induce membrane budding without capsids when expressed ectopically or on artificial membranes in vitro, but not in the infected cell. We have previously described a pUL34 mutant that contained alanine substitutions at R158 and R161 and that showed impaired growth, impaired pUL31/pUL34 interaction, and unregulated budding. Here, we determine the phenotypic contributions of the individual substitutions to these phenotypes. Neither substitution alone was able to reproduce the impaired growth or nuclear egress complex (NEC) interaction phenotypes. Either substitution, however, could fully reproduce the unregulated budding phenotype, suggesting that misregulated budding may not substantially impair virus replication. In addition, the R158A substitution caused relocalization of the NEC to intranuclear punctate structures and recruited lamin A/C to these structures, suggesting that this residue might be important for recruitment of kinases for dispersal of nuclear lamins. IMPORTANCE Herpesvirus nuclear egress is a complex, regulated process coordinated by two virus proteins that are conserved among the herpesviruses that form a heterodimeric nuclear egress complex (NEC). The NEC drives budding of capsids at the inner nuclear membrane and recruits other viral and host cell proteins for disruption of the nuclear lamina, membrane scission, and fusion. The structural basis of individual activities of the NEC, apart from membrane budding, are not clear, nor is the basis of the regulation of membrane budding. Here, we explore the properties of NEC mutants that have an unregulated budding phenotype, determine the significance of that regulation for virus replication, and also characterize a structural requirement for nuclear lamina disruption.The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is bringing an unprecedented health crisis to the world. To date, our understanding of the interaction between SARS-CoV-2 and host innate immunity is still limited. Previous studies reported that SARS-CoV-2 nonstructural protein 12 (NSP12) was able to suppress interferon-β (IFN-β) activation in IFN-β promoter luciferase reporter assays, which provided insights into the pathogenesis of COVID-19. In this study, we demonstrated that IFN-β promoter-mediated luciferase activity was reduced during coexpression of NSP12. However, we could show NSP12 did not affect IRF3 or NF-κB activation. Moreover, IFN-β production induced by Sendai virus (SeV) infection or other stimulus was not affected by NSP12 at mRNA or protein level. Additionally, the type I IFN signaling pathway was not affected by NSP12, as demonstrated by the expression of interferon-stimulated genes (ISGs). Further experiments revealed that diffe2 NSP12 could not suppress IFN-β signaling. On the other hand, our study suggests that caution needs to be taken with the interpretation of SARS-CoV-2-related luciferase assays.Infections caused by Naegleria fowleri, Acanthamoeba spp., and Balamuthia mandrillaris result in a variety of clinical manifestations in humans. These amoebae are found in water and soil worldwide. Acanthamoeba spp. SMAP activator cell line and B. mandrillaris cause granulomatous amoebic encephalitis, which usually presents as a mass, while N. fowleri causes primary amoebic meningoencephalitis. Acanthamoeba spp. can also cause keratitis, and both Acanthamoeba spp. and B. mandrillaris can cause lesions in skin and respiratory mucosa. These amoebae can be difficult to diagnose clinically as these infections are rare and, if not suspected, can be misdiagnosed with other more common diseases. Microscopy continues to be the key first step in diagnosis but the amoeba can be confused with macrophages or other infectious agents if an expert in infectious disease pathology or clinical microbiology is not consulted. Although molecular methods can be helpful in establishing the diagnosis, these are only available in referral centers. Treatment requires combination of antibiotics and antifungals and, even with prompt diagnosis and treatment, mortality for neurological disease is extremely high.The next-generation short-read sequencing technologies that generate comprehensive, whole-genome data with single-nucleotide resolution have already advanced tuberculosis diagnosis, treatment, surveillance and source investigation. Their high costs, tedious and lengthy processes, and large equipment remain major hurdles for research use in high tuberculosis burden countries and implementation into routine care. The portable next-generation sequencing devices developed by Oxford Nanopore Technologies (ONT) are attractive alternatives due to their long-read sequence capability, compact low-cost hardware, and continued improvements in accuracy and throughput. A systematic review of the published literature demonstrated limited uptake of ONT sequencing in tuberculosis research and clinical care. Of the 12 eligible articles presenting ONT sequencing data on at least one Mycobacterium tuberculosis sample, four addressed software development for long read ONT sequencing data with potential applications for M. tuberculosis. Only eight studies presented results of ONT sequencing of M. tuberculosis, of which five performed whole-genome and three did targeted sequencing. Based on these findings, we summarize the standard processes, reflect on the current limitations of ONT sequencing technology, and the research needed to overcome the main hurdles. Summary The low capital cost, portable nature and continued improvement in the performance of ONT sequencing make it an attractive option for sequencing for research and clinical care, but limited data is available on its application in the tuberculosis field. Important research investment is needed to unleash the full potential of ONT sequencing for tuberculosis research and care.Detection of carbapenemases in Enterobacterales is crucial for patient treatment and infection control. Among others, combination disk tests (CDT) with different inhibitors (e.g. EDTA) and variations of the carbapenem inactivation method (CIM) are recommended by EUCAST or CLSI and are used by many laboratories as they are relatively inexpensive. In this study, we compare three commercially available CDT, faropenem disc testing (FAR) and the zinc supplemented CIM test (zCIM) for detection of carbapenemase-producing Enterobacterales (CPE). Rosco KPC/MBL and OXA-48 Confirm Kit (ROS-CDT), Liofilchem KPC&MBL&OXA-48 disc kit (LIO-CDT), Mastdiscs Combi Carba plus (MAST-CDT), FAR and zCIM were challenged with 106 molecularly characterized CPE and 47 non-CPE. Sensitivity/specificity was 86% (CI 78-92%)/98% (CI 89-100%) for MAST-CDT and ROS-CDT, 96% (CI 91-99%)/87% (CI 74-95%) for LIO-CDT and 99% (CI 95-100%)/81% (CI 67-91%) for FAR compared to 98% (CI 93-100%)/100% (CI 92-100%) for zCIM. The CDT showed great performance differences depending on the carbapenemase class, with MAST-CDT and LIO-CDT best detecting class B, ROS-CDT class A and LIO-CDT class D carbapenemases.