About seller
Inflammatory signaling is required for hematopoietic stem and progenitor cell (HSPC) development. Here, we studied the involvement of RIG-I-like receptors (RLRs) in HSPC formation. Rig-I or Mda5 deficiency impaired, while Lgp2 deficiency enhanced, HSPC emergence in zebrafish embryos. selleck Rig-I or Mda5 deficiency reduced HSPC numbers by inhibiting inflammatory signals that were in turn enhanced in Lgp2 deficient embryos. Simultaneous reduction of Lgp2 and either Rig-I or Mda5 rescued inflammatory signals and HSPC numbers. Modulating the expression of the signaling mediator Traf6 in RLR deficient embryos restored HSPC numbers. Repetitive element transcripts could be detected in hemogenic endothelial cells and HSPCs, suggesting a role as RLR ligands. Indeed, ectopic expression of repetitive elements enhanced HSPC formation in wild-type, but not in Rig-I or Mda5 deficient embryos. Manipulation of RLR expression in mouse fetal liver HSPCs indicated functional conservation among species. Thus, repetitive elements transcribed during development drive RLR-mediated inflammatory signals that regulate HSPC formation.Establishment of B-lineage-specific gene expression requires the binding of transcription factors to inaccessible chromatin of progenitors. The transcription factor EBF1 can bind genomic regions prior to the detection of chromatin accessibility in a manner dependent on EBF1's C-terminal domain (CTD) and independent of cooperating transcription factors. Here, we studied the mechanism whereby the CTD enables this pioneering function. The CTD of EBF1 was dispensable for initial chromatin targeting but stabilized occupancy via recruitment of the chromatin remodeler Brg1. We found that the CTD harbors a prion-like domain (PLD) with an ability of liquid-liquid phase separation, which was enhanced by interaction of EBF1 with the RNA-binding protein FUS. Brg1 also partitioned into phase-separated FUS condensates and coincided with EBF1 and FUS foci in pro-B cells. Heterologous PLDs conferred pioneering function on EBF1ΔCTD. Thus, the phase separation ability of EBF1 facilitates Brg1-mediated chromatin opening and the transition of naive progenitor chromatin to B-lineage-committed chromatin.The emergence of cancer from diverse normal tissues has long been rationalized to represent a common set of fundamental processes. However, these processes are not fully defined. Here, we show that forced expression of glucose-6-phosphate dehydrogenase (G6PD) affords immortalized mouse and human cells anchorage-independent growth in vitro and tumorigenicity in animals. Mechanistically, G6PD augments the NADPH pool by stimulating NAD+ kinase-mediated NADP+ biosynthesis in addition to converting NADP+ to NADPH, bolstering antioxidant defense. G6PD also increases nucleotide precursor levels through the production of ribose and NADPH, promoting cell proliferation. Supplementation of antioxidants or nucleosides suffices to convert immortalized mouse and human cells into a tumorigenic state, and supplementation of both is required when their overlapping metabolic consequences are minimized. These results suggest that normal cells have a limited capacity for redox balance and nucleotide synthesis, and overcoming this limit might represent a key aspect of oncogenic transformation.Radiopharmaceuticals are commonly used in children in nuclear medicine. Because of physiological differences in growing children and their radiosensitivity, precautions must be taken throughout the medication use process. The aim of this work is to propose recommendations, under the aegis of the Société française de radiopharmacie (SoFRa), for each subsystem of the process, in order to ensure the safety of pediatric patients. Furthermore, an analysis of two surveys on diagnostic radiopharmaceuticals dosage used in different nuclear medicine departments in France is detailed. Recommendations for therapeutic radiopharmaceuticals are also provided. Specificities of the preparation for pediatric patients are discussed through the example of the radiopharmaceuticals for lung perfusion scintigraphy. The preparation of individual dose and administration are also described. In nuclear medicine, radiopharmacist's expertise is essential for patient safety. A multidisciplinary approach is necessary to secure pediatric radiopharmaceutical use process.Most of potential diagnostic and therapeutic nanoparticles fail to reach clinical trials because assessment of their 'drug-like' properties is often overlooked during the discovery stage. This compromises the results of cell culture and animal experiments, making them insufficient to evaluate the lead candidates for testing on patients. In this study, we demonstrate the potential of high-resolution inductively coupled plasma mass spectrometry (ICP-MS) as a nanoparticle qualification tool. Using novel gold nanoparticles stabilized by N-heterocyclic carbenes as test nanoparticles, it was shown that important prerequisites for biomedical applications, such as resistance to the action of human serum milieu or reactivity toward serum biomolecules, can be reliably assessed by recording the signals of gold or sulfur isotopes. Implemented during the screening stage, the method would provide benefits in shortening timelines and reducing cost for selection and initial testing of medicinal nanoparticle candidates.The reported method allows for a simple and rapid monitoring of DNA replication and cell cycle progression in eukaryotic cells in vitro. The DNA of replicating cells is labeled by incorporation of a metabolically-active fluorescent (Cy3) deoxyuridine triphosphate derivative, which is delivered into the cells by a synthetic transporter (SNTT1). The cells are then fixed, stained with DAPI and analyzed by flow cytometry. Thus, this protocol obviates post-labeling steps, which are indispensable in currently used incorporation assays (BrdU, EdU). The applicability of the protocol is demonstrated in analyses of cell cycles of adherent (U-2 OS, HeLa S3, RAW 264.7, J774 A.1, Chem-1, U-87 MG) and suspension (CCRF-CEM, MOLT-4, THP-1, HL-60, JURKAT) cell cultures, including those affected by a DNA polymerase inhibitor (aphidicolin). Owing to a short incorporation time (5-60 min) and reduced number of steps, the protocol can be completed within 1-2 h with a minimal cell loss and with excellent reproducibility.