drinkperiod11
drinkperiod11
0 active listings
Last online 4 months ago
Registered for 4+ months
Send message All seller items (0) www.selleckchem.com/products/harringtonine.html
About seller
Results show that the new model attains a superior performance, and it is considerably faster than the corresponding method for GDM distributions.This article focuses on the global robust exponential dissipativity (GRED) of uncertain second-order BAM neural networks with mixed time-varying delays. First, a new differential inequality for the concerned second-order system is established. Second, by constructing some new Lyapunov-Krasovskii functionals (LKFs) and applying this new inequality and some other inequalities, some new GRED criteria in the form of linear matrix inequalities are presented. The global exponential attractive sets are also provided simultaneously. Different from the existing reduced-order methods, this article considers some new LKFs to directly analyze the dynamics of the addressed system via a nonreduced-order strategy. Finally, the correctness of the theoretical results is verified by simulation experiments.Recently, artificial intelligence and machine learning in general have demonstrated remarkable performances in many tasks, from image processing to natural language processing, especially with the advent of deep learning (DL). Along with research progress, they have encroached upon many different fields and disciplines. Some of them require high level of accountability and thus transparency, for example, the medical sector. Harringtonine cost Explanations for machine decisions and predictions are thus needed to justify their reliability. This requires greater interpretability, which often means we need to understand the mechanism underlying the algorithms. Unfortunately, the blackbox nature of the DL is still unresolved, and many machine decisions are still poorly understood. We provide a review on interpretabilities suggested by different research works and categorize them. The different categories show different dimensions in interpretability research, from approaches that provide ``obviously'' interpretable information to the studies of complex patterns. By applying the same categorization to interpretability in medical research, it is hoped that 1) clinicians and practitioners can subsequently approach these methods with caution; 2) insight into interpretability will be born with more considerations for medical practices; and 3) initiatives to push forward data-based, mathematically grounded, and technically grounded medical education are encouraged.Due to the existing effects of intermittent jumps of unknown parameters during operation, effectively establishing transient and steady-state tracking performances in control systems with unknown intermittent actuator faults is very important. In this article, two prescribed performance adaptive neural control schemes based on command-filtered backstepping are developed for a class of uncertain strict-feedback nonlinear systems. Under the condition of system states being available for feedback, the state feedback control scheme is investigated. When the system states are not directly measured, a cascade high-gain observer is designed to reconstruct the system states, and in turn, the output feedback control scheme is presented. Since the projection operator and modified Lyapunov function are, respectively, used in the adaptive law design and stability analysis, it is proven that both schemes can not only ensure the boundedness of all closed-loop signals but also confine the tracking errors within prescribed arbitrarily small residual sets for all the time even if there exist the effects of intermittent jumps of unknown parameters. Thus, the prescribed system transient and steady-state performances in the sense of the tracking errors are established. Furthermore, we also prove that the tracking performance under output feedback is able to recover the tracking performance under state feedback as the observer gain decreases. Simulation studies are done to verify the effectiveness of the theoretical discussions.The proliferation of location-aware social networks (LSNs) has facilitated the research of user mobility modeling and check-in prediction, thereby benefiting various downstream applications such as precision marketing and urban management. Most of the existing studies only focus on predicting the spatial aspect of check-ins, whereas the joint inference of the spatial and temporal aspects more fits the real application scenarios. Moreover, although social relations have been extensively studied in a recommender system, only a few efforts have been observed in the next check-in location prediction, leaving room for further improvement. In this article, we study the next check-in inference problem, which demands the joint inference of the next check-in location (Where) and time (When) for a target user (Who). We devise a model named ARNPP-GAT, which combines an attention-based recurrent neural point process with a graph attention networks. The core technical insight of ARNPP-GAT is to integrate user long-term representation learning, short-term behavior modeling, and temporal point process into a unified architecture. Specifically, ARNPP-GAT first leverages graph attention networks to learn the long-term representation of users by encoding their social relations. More importantly, the ARNPP endows the model with the capability of characterizing the effects of past check-in events and performing multitask learning to yield the next check-in time and location prediction. Empirical results on two real-world data sets demonstrate that ARNPP-GAT is superior compared with several competitors, validating the contributions of multitask learning and social relation modeling.Segmenting arbitrary 3D objects into constituent parts that are structurally meaningful is a fundamental problem encountered in a wide range of computer graphics applications. Existing methods for 3D shape segmentation suffer from complex geometry processing and heavy computation caused by using low-level features and fragmented segmentation results due to the lack of global consideration. We present an efficient method, called SEG-MAT, based on the medial axis transform (MAT) of the input shape. Specifically, with the rich geometrical and structural information encoded in the MAT, we are able to develop a simple and principled approach to effectively identify the various types of junctions between different parts of a 3D shape. Extensive evaluations and comparisons show that our method outperforms the state-of-the-art methods in terms of segmentation quality and is also one order of magnitude faster.

drinkperiod11's listings

User has no active listings
Are you a professional seller? Create an account
Non-logged user
Hello wave
Welcome! Sign in or register