planetskirt63
planetskirt63
0 active listings
Last online 4 months ago
Registered for 4+ months
Send message All seller items (0) www.selleckchem.com/products/stat-in-1.html
About seller
Dietary exposure is a major cause of pesticide bioaccumulation in herbivores. However, various types of natural conditions affect the structure of the complicated herbivores' diets, making it difficult to assess their exposure to pesticides. In this study, to evaluate the role of pesticides in the terrestrial food web, a dynamic hybrid dietary model was developed for North American white-tailed deer (or whitetails), which integrates different plant types and the digestibility of deer's foods. Moreover, an equivalent season approach was introduced to generalize the pesticide intake rate geographically. The results indicate that the soil-to-whitetail (meat) bioaccumulation factor (BAF) values in summer are significantly higher than those of other seasonal periods, owing to the high food availability and digestibility. Pesticides with low octanol/water partition coefficients have a high computed soil-to-plant BAF, but a low plant-to-whitetail (meat) BAF, because the transpiration process dominates the bioaccumulation process in plants. Lipid absorption plays a more important role in herbivores and lowers the biomagnification ratio (a smaller amount of pesticides flows to the next level of the food chain). According to the equivalent season approach, geographic locations with warmer climates facilitate pesticide bioaccumulation at a higher level of the terrestrial food web.A 15N-tracer incubation experiment was conducted to investigate the short-term effects of biochar on gross N transformation rates and nitrous oxide (N2O) emissions in soils under 1-year and 10-year vegetable cultivations. Biochar was applied at three rates 0 (control), 10, and 30 t ha-1. Gross N transformation rates in the two vegetable soils varied in response to biochar application. Specifically, organic N oxidation into NO3- (ONorg) was almost negligible in the biochar-amended soils, and biochar application at 10 t ha-1 did not change either the rate of mineralization of organic N into NH4+ (MNorg) nor the inorganic N supply capacity (INS, ONorg + MNorg) in both soils, when compared to the control. However, 30 t ha-1 biochar decreased INS significantly, by inhibiting MNorg, in the 1-year vegetable soil but increased INS, by stimulating MNorg, in the 10-year vegetable soil. The rates of NH4+ oxidation into NO3- (ONH4), NO3- immobilization into organic N, and dissimilatory NO3- reduction into NH4+ were not influenced significantly by biochar application in the 1-year vegetable soil, resulting in no significant differences in NO3- production potential. Conversely, biochar decreased NO3- production potential significantly in the 10-year vegetable soil, by inhibiting ONH4 and increasing NH4+ immobilization into organic N (INH4), with more obvious effects under higher biochar application rates. Overall, the results demonstrate the capacity of biochar to stimulate NH4+ turnover and to decrease NO3- production potential in soil under long-term vegetable cultivation; however, the effect is limited under short-term vegetable cultivation. In addition, N2O emissions decreased significantly in biochar-amended vegetable soils. In epidemic thunderstorm asthma (ETSA) events a large number of people develop asthma symptoms over a short period of time. This is thought to occur because of a unique combination of high amounts of pollen and certain meteorological conditions. However, the exact cause and mechanism of epidemic thunderstorm asthma remains unclear. The objective of this study was to test the hypothesis that convergence lines may be a causative factor in ETSA events, by investigating whether convergence line weather events are associated with the occurrence of high asthma presentations days during the Victorian grass pollen season (October-December). A case control method was used. All public hospitals within 75km of the Melbourne weather radar were included, and data were taken from 2009 to 2017 during the Victorian grass pollen season. Cases hospital days were hospitals with a high number of asthma presentations within a 24-h period, and controls were hospitals with an expected number of asthma presentations. Exposure was defined as geographical proximity of a convergence line to the hospital case or control. Eighty-one case hospital days and 157 hospital day controls were included in the study. The odds of exposure to a convergence line were significantly higher for cases than for controls at all exposure distances. At 4km, 80 of the 81 cases had been exposed to a convergence line. Convergence lines appear to be a necessary, but not sufficient, element in the cause of epidemic thunderstorm asthma. This is the first study to show a clear link between epidemic thunderstorm asthma and convergence lines.Convergence lines appear to be a necessary, but not sufficient, element in the cause of epidemic thunderstorm asthma. This is the first study to show a clear link between epidemic thunderstorm asthma and convergence lines.In recent decades, the relationships between species distributional shifts and climate change have been investigated at various geographic scales, yet there is still a gap in understanding the impacts of climate change on marine commercial fish species surrounding the Antarctic Peninsula. The dynamic bioclimate envelope model (DBEM) is a mechanistic model that encompass species distribution model and population dynamic model approaches to project the spatiotemporal change of marine commercial fish species driven by various climate change scenarios in the Southern Ocean. This paper focuses on the spatiotemporal changes of marine commercial fish species surrounding the Antarctic Peninsula under a high emissions scenario (RCP8.5) and a low emissions scenario (RCP2.6) from 1970 to 2060 following three different Earth System Models (ESMs), namely, the GFDL-ESM 2G, IPSL-CM5A-MR and MPI-ESM-MR. Results reveal that i) The general latitudinal gradient patterns in species richness shifts poleward associated with a global abundance decrease ii) The Spp. check details richness in Eastern Antarctic Peninsula (EAP) is higher than in the Western Antarctic Peninsula (WAP) at the same latitude (>65°S latitude). iii) The reasons are that the krill-dependent predators in WAP could face a higher risk of depletion than that in EAP due to ocean warming and anthropogenic activities.

planetskirt63's listings

User has no active listings
Are you a professional seller? Create an account
Non-logged user
Hello wave
Welcome! Sign in or register