About seller
4 ± 0.3%, 2.45 ± 0.04%, and 0.51 ± 0.05% for BDE3, BDE15, and BDE47, respectively, at the end of incubation, while mineralization rate constant was independent of the molecular structure, suggesting that solubility of LBDEs is the limit factor for their persistence in soil. The mineralization was positively linearly correlated with the formation of NERs (22.5 ± 1.9%, 11.0 ± 3.6%, and 6.7 ± 2.7% for BDE3, BDE15, and BDE47, respectively), which was mainly located in humin fraction and formed also in sterilized soil, suggesting a binding of transformation intermediates to soil humic substances and a physico-chemical entrapment of LBDEs in soil. The results provide new insights into fate of LBDE congeners in soil, and suggest a need to elucidate nature of the NERs of LBDEs, especially the stability of NERs in the environment. Methamphetamine (METH) is a central nervous system stimulant drug whose use has increased in the last few years worldwide. After the ingestion of even a single dose, METH is excreted by the organism and enters the aquatic ecosystems, whereby concentrations up to hundreds of ng/L were measured in both sewage and surface waters. Although the environmental concentrations are currently quite low, the high biological activity of METH might cause adverse effects towards non-target organisms. However, to date the information on METH toxicity towards aquatic organisms is limited. Thus, the present study aimed at investigating biochemical and behavioral effects induced by METH exposure towards the Cladoceran Daphnia magna. A 21-days exposure to two environmental concentrations of METH (50 ng/L and 500 ng/L) was performed. At selected time points (7, 14 and 21 days) the amount of pro-oxidant molecules, the activity of antioxidant enzymes (SOD, CAT, GPx) and levels of lipid peroxidation (LPO) were measured as oxidative stress-related endpoints. Changes in swimming activity and reproductive output were assessed as behavioral endpoints. METH exposure affected the oxidative status of D. magna specimens at both tested concentrations, although no oxidative damage occurred. Although METH did not modulate the swimming activity of D. https://www.selleckchem.com/products/adenine-sulfate.html magna, a significant, positive effect on reproductive output, in terms of number of offspring was found. Our results showed that low concentrations of METH might represent a threat for D. magna, affecting the health status of this aquatic species at different level of biological organization. Suspended particulate matter (SPM) measurements and backward air mass trajectory analysis using the HYSPLIT model were performed to better understand the main sources and transport pathways of heavy metals in atmospheric aerosols reaching the Antarctic region. Field campaigns were carried out during the austral summer 2016-2017 at the "Gabriel de Castilla" Spanish Antarctic Research Station, located on Deception Island. Aerosols were deposited in an air filter through a low-volume sampler and chemically analysed using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The study of air masses and high enrichment factor values of several elements (Hf, Zr, As, Cu, Sn, Zn, Pb) together with their correlations (Hf/Zr, V/As, Ti/Mn and Cu/Sn) suggests a potentially significant role of three main sources in this area remote maritime traffic, local petrol combustion (generators and/or tourist cruises), and remote/local crust. Additionally, the investigation of atmospheric flow patterns through backward trajectory analysis revealed that Hf/Zr correlation was related to a remote crustal origin, V/As to anthropogenic local pollution, Ti/Mn to terrestrial inputs on the island and Cu/Sn to remote anthropogenic sources. Overall, the present study demonstrates the existence of anthropogenic pollution at this remote site from distant as well as local sources following the Antarctic circumpolar wind pattern. The common regulatory approach for managing ground-level ozone (O3) formation is based upon reducing the emission of total VOC in VOC limited regions, and the emission of NOx in NOx limited regions. However, the characteristic VOC species emitted from different sources are of different ozone formation potentials (OFP). Without an in-depth understanding of the relative OFP contributions from specific sources, the effectiveness of the existing approach for controlling ground-level O3 at the regional scale is limited. This study collected and analyzed five years (2012-2016) of monitoring data for 56 most photochemically reactive VOC species at Port Moody, an industrial city in Metro Vancouver, Canada that has experienced elevated O3 levels in its ambience. Source-specific contributions to OFP were quantified for major VOC emitters to deliberate the underlying causes of elevated O3 recently observed in this populated region. Six sources were identified using the positive matrix factorization (PMF) model, consistito formulate effective strategies for reducing ground-level O3, the seasonal and spatial variations of major OFP sources should be assessed by the regulatory authorities. Step-feeding (SF) strategies have been adopted in several types of constructed wetlands (CWs) to enhance nitrogen (N) removal. However, it is unclear how SF affects the N-transforming bacterial communities in CWs. Herein, four multi-stage vertical flow constructed wetlands (MS-VFCWs), each including three vertical flow stages (stage 1-3), were operated under different SF ratios (0%, 10%, 20% and 30%) in the stage 2. The physicochemical influent and effluent parameters, i.e., redox potential (ORP), pH value, chemical oxygen demand (COD), total nitrogen (TN), ammonia (NH4+-N), nitrate (NO3--N), and nitrite (NO2--N), free-ammonia (FA) concentration, COD/TN ratio, as well as the abundance, structure, and activity of N-transforming bacteria were investigated. Results showed that N removal in a multi-stage vertical flow constructed wetland in the absence of SF was 45.0 ± 7.74%. Alternatively, a combined SF ratio of 20% increased N removal to 61.7% ± 4.50%, accounting for a 37.1% increase compared to the SF ratio ofed excellent N removal efficiency with a low COD/TN ratio. V.