beretfrench1
beretfrench1
0 active listings
Last online 2 months ago
Registered for 2+ months
Send message All seller items (0) www.selleckchem.com/products/genipin.html
About seller
The system successfully displayed 3D information consisting of six binary images at an update rate of 1000 volume/s.We theoretically investigate strong-filed electron vortices in time-delayed circularly polarized laser pulses by a generalized quantum-trajectory Monte Carlo (GQTMC) model. Vortex interference patterns in photoelectron momentum distributions (PMDs) with various laser parameters can be well reproduced by the semiclassical simulation. Genipin The phase difference responsible for the interference structures is analytically identified through trajectory-based analysis and simple-man theory, which reveal the underlying mechanism of electron vortex phenomena for both co-rotating and counter-rotating component. This semiclassical analysis can also demonstrate the influences of laser intensity and wavelength on the number of arms of vortices. Furthermore, we show the influence of the Coulomb effect on the PMDs. Finally, the controlling of the ionization time intervals in the tens to hundreds of attosecond magnitude is qualitatively discussed.For probabilistic amplitude shaping (PAS), we propose a super-symbol transmission method that improves fiber nonlinearity tolerance. A simple fiber nonlinearity low-pass filtering model, as well as its interaction with the spectral dip of signal's intensity waveform, is provided to explain the origin of this nonlinear benefit. With 25-GHz-spaced, 26 × 22.5 GBaud dual-polarized PAS-64 quadrature amplitude modulation (QAM) signals transmitted over 12 spans of 80-km standard single mode fiber (SSMF), the proposed method is found to provide ∼0.15-dB gain over the previous finite-blocklength method with intra-DM pairing, ∼0.26-dB gain over finite-blocklength method with inter-DM pairing, and ∼0.44-dB benefit over the traditional method, all with a feasible blocklength at 200.The detection of terahertz photons by using silicon-based devices enabled by visible photons is one of the fundamental ideas of quantum optics. Here, we present a classical detection principle using optical upconversion of terahertz photons to the near-infrared spectral range in the picosecond pulse regime, which finally enables the detection with a conventional sCMOS camera. By superimposing terahertz and optical pump pulses in a periodically poled lithium-niobate crystal, terahertz photons at 0.87 THz are converted to optical photons with wavelengths close to the central pump wavelength of 776 nm. A tunable delay between the pulses helps overlap the pulses and enables time-of-flight measurements. Using a sCMOS camera, we achieve a dynamic range of 47.8 dB with a signal to noise ratio of 23.5 dB at a measurement time of one second, in our current setup.Partial transfer absorption imaging (PTAI) of ultracold atoms allows for repeated and minimally-destructive measurements of an atomic ensemble. Here, we present a reconstruction technique based on PTAI that can be used to piece together the non-uniform spatial profile of high-density atomic samples using multiple measurements. We achieved a thirty-fold increase of the effective dynamic range of our imaging, and were able to image otherwise saturated samples with unprecedented accuracy of both low- and high-density features.Traditional compressive X-ray tomosynthesis uses sequential illumination to interrogate the object, leading to long scanning time and image distortion due to the object variation. This paper proposes a single-snapshot compressive tomosynthesis imaging approach, where the object is simultaneously illuminated by multiple X-ray emitters equipped with coded apertures. Based on rank, intensity and sparsity prior models, a nonlinear image reconstruction framework is established. The coded aperture patterns are optimized based on uniform sensing criteria. Then, a modified split Bregman algorithm is developed to reconstruct the object from the set of nonlinear compressive measurements. It is shown that the proposed method can be used to reduce the inspection time and achieve robust reconstruction with respect to shape variation or motion of objects.We report camera-free three-dimensional (3D) dual photography. Inspired by the linkage between fringe projection profilometry (FPP) and dual photography, we propose to implement coordinate mapping to simultaneously sense the direct component of the light transport matrix and the surface profiles of 3D objects. By exploiting Helmholtz reciprocity, dual photography and scene relighting can thus be performed on 3D images. To verify the proposed imaging method, we have developed a single-pixel imaging system based on two digital micromirror devices (DMDs). Binary cyclic S-matrix patterns and binary sinusoidal fringe patterns are loaded on each DMD for scene encoding and virtual fringe projection, respectively. Using this system, we have demonstrated viewing and relighting 3D images at user-selectable perspectives. Our work extends the conceptual scope and the imaging capability of dual photography.Fiber optic extrinsic Fabry-Perot interferometric (EFPI) sensors are ideal candidates for on-line partial discharges (PDs) monitoring due to their inherent advantages, such as immunity to electromagnetic interference (EMI), highly compact sensing probes, and remote signal transmission. However, up to date, the design and fabrication of high-performance sensing diaphragms still remain challenging, and most of the reported diaphragms utilize circular structures with the peripheral sidewalls completely fixed. Herein, a novel EFPI ultrasonic sensor for on-line PDs monitoring is demonstrated. The proposed sensing diaphragm combines a silicon beam-supported diaphragm and a fixed boundary ring with a thickness of 5 µm, which was optimized through the multi-objective genetic algorithm (MOGA) revealing its high design flexibility and manufactured by using the microelectromechanical systems (MEMS) processing technology on a silicon-on-insulator (SOI) wafer. Compared with the circular and beam-supported diaphragm, the developed structure exhibits a higher sensitivity. The testing results show that the developed sensor owns the sensitivity and noise-limited minimum detectable ultrasonic pressure (MDUP) of -10 dB re. 1V/Pa and 63 µPa/sqrt(Hz) at its designed resonant frequency, respectively. Finally, the sensor's ability to detect PDs is validated in a temporary built PDs experimental environment, further proving its great potential to perform the on-line PDs monitoring.

beretfrench1's listings

User has no active listings
Are you a professional seller? Create an account
Non-logged user
Hello wave
Welcome! Sign in or register