About seller
The last section shows that such a methodological change offers the opportunity to extend the scope of normative theorising. In particular, it illustrates how a realistic approach encourages theorists to focus on local-level policies, as well as to devote attention to non-governmental actors and to their role in tackling citizens' hostility towards immigrants.In this review paper, JAYA algorithm, which is a recent population-based algorithm is intensively overviewed. The JAYA algorithm combines the survival of the fittest principle from evolutionary algorithms as well as the global optimal solution attractions of Swarm Intelligence methods. Initially, the optimization model and convergence characteristics of JAYA algorithm are carefully analyzed. Thereafter, the proposed versions of JAYA algorithm have been surveyed such as modified, binary, hybridized, parallel, chaotic, multi-objective and others. The various applications tackled using relevant versions of JAYA algorithm are also discussed and summarized based on several problem domains. Furthermore, the open sources code of JAYA algorithm are identified to provide enrich resources for JAYA research communities. The critical analysis of JAYA algorithm reveals its advantages and limitations in dealing with optimization problems. Finally, the paper ends up with conclusion and possible future enhancements suggested to improve the performance of JAYA algorithm. The reader of this overview will determine the best domains and applications used by JAYA algorithm and can justify their JAYA-related contributions. Pregnancy is associated with significant hemodynamic changes, making it a potentially high-risk period for women with underlying cardiovascular disease. Echocardiography remains the preferred modality for diagnosis and monitoring of pregnant women with cardiovascular disease as it is widely available and does not require radiation. This paper reviews the role of echocardiography along the continuum of pregnancy in at-risk patients, with a focus on key cardiac disease states in pregnancy. In the preconception stage, risk stratification scores such as CARPREG II, ZAHARA and the modified WHO remain central to counseling and planning. As such, echocardiography serves an important role in assessing the severity of pre-existing structural disease. Among women with pre-existing cardiovascular disease who become pregnant-as well as those who develop cardiovascular symptoms during pregnancy-echocardiography is a key imaging tool for assessment of hemodynamic and structural changes and is recommended as the first-lrves as a widely available tool for serial monitoring of pregnant women with cardiovascular disease throughout pregnancy and the postpartum period.Thermal joining can lead to high thermal stresses, undesired structural changes, and the associated loss of properties. In the turbine industry, monocrystalline materials are often used to take advantage of their high creep resistance and heat resistance. For process-related reasons, components are mechanically machined, and the contours usually have slightly work-hardened areas due to the mechanical processing. Downstream thermal processes at temperatures above 1100 °C can lead to recrystallization (Rx) at these areas, so that the properties are negatively affected. read more Usually, the joining temperatures for high-temperature brazing are in the range of 1200 °C, both in new installations and in the case of repairs. It is therefore desirable to reduce the joining temperature without changing the choice of filler material, which can lead to susceptibility to corrosion and oxidation. According to investigations of the last years, nanojoining with nanoparticles offers great potential. The joining temperature can be lois dependent on temperature and holding time. Moreover, if the temperature is too low and holding time too short, only insufficiently sintering occurs, which leads to sample failure during the metallographic preparation. On the other hand, samples with a tensile shear strength of up to 165 MPa can be achieved with convenient joining conditions.Human population is expected to reach to about 10 billion by 2050. Climate change affects crop production, thus posing food security challenges. Conventional breeding alone will not bridge the gap between current level of crop production and expected levels in the decades to come in the food production systems. Rate of genetic gain with time has remained narrow considerably. Biotechnology-enabled crops developed through genome editing will have a part to play in improving crop productivity, meeting food, nutrition security besides catering to regional preferences and fetching valuable foreign exchange. Political, social, economical proposition, scientific will, retailer and consumer acceptance are a must for genome editing (GE) to succeed and add value in the food value chain. This will also help to make agriculture a lucrative profession and attract youth. Therefore, the present review looks into existing regulations governing crops developed using biotechnology in India, institutes involved in genome editing, prospects of new tools developed in this sphere such as DNA-free editing systems, nanotechnology, their applicability in crop improvement efforts, social and future prospects taking cue from recent global developments. This will make GE more appealing to stakeholders and defray any safety concerns.Self-organizing structures of CoVE proteins have been investigated using a coarse-grained model in Monte Carlo simulations as a function of temperature (T) in a range covering the native (low T) to denatured (high T) phases. The presence of even a few chains accelerates the very slow dynamics of an otherwise free protein chain in the native phase. The radius of gyration depends nonmonotonically on temperature and increases with the protein concentration in both the native and denatured phase. The density of organized morphology over residue-to-sample length scales (λ) is quantified by an effective dimension (D) that varies between ~ 2 at high to ~ 3 at low temperatures at λ ~ R g with an overall lower density (D ~ 2) on larger scales. The magnitude of D depends on temperature, length scale, and concentration of proteins, i.e., D ~ 3.2 at λ ~ Rg, D ~ 2.6 at λ > R g, and D ~ 2.0 at λ ≫ R g, at T = 0.024.