chairolive26
chairolive26
0 active listings
Last online 2 months ago
Registered for 2+ months
Send message All seller items (0) www.selleckchem.com/products/ve-821.html
About seller
Tumor-treating fields (TTFields) are alternating electrical fields of intermediate frequency and low intensity that can slow or inhibit tumor growth by disrupting mitosis division of cancerous cells through cell cycle proteins. In this work, for the first time, an in-house fabricated cyclo-olefin polymer made microfluidic bioreactors are integrated with Cr/Au interdigitated electrodes to test TTFields on yeast cells with fluorescent proteinNop56 gene. A small gap between electrodes (50 μm) allows small voltages ( less then 150 mV) to be applied on the cells; hence, uninsulated gold electrodes are used in the non-faradaic region without causing any electrochemical reaction at the electrode-medium interface. Electrochemical modeling as well as impedance characterization and analysis of the electrodes are done using four different cell nutrient media. The experiments with yeast cells are done with 150 mV, 150 kHz and 30 mV, 200 kHz sinusoidal signals to generate electrical field magnitudes of 6.58 V/cm and 1.33 V/cm, respectively. In the high electrical field experiment, the cells go through electroporation. In the experiment with the low electrical field magnitude for TTFields, the cells have prolonged mitosis from typical 80-90 min to 200-300 min. Our results confirm the validity of the electrochemical model and the importance of applying a correct magnitude of the electrical field. Compared to the so far reported alternatives with insulated electrodes, the here developed thermoplastic microfluidic bioreactors with uninsulated electrodes provide a new, versatile, and durable platform for in vitro cell studies toward the improvement of anti-cancer therapies including personalized treatment.Here, we describe the magnetic actuation of soft shuttles for open-top microfluidic applications. The system is comprised of two immiscible liquids, including glycerol as the soft shuttle and a suspension of iron powder in sucrose solution as the magnetic drop. Permanent magnets assembled on 3D printed motorized actuators were used for the actuation of the magnetic drop, enabling the glycerol shuttle to be propelled along customized linear, circular, and sinusoidal paths. The dynamics of the hybrid shuttle-magnetic drop system was governed by the magnetic force, the friction at the interface of the shuttle and the substrate, and the surface tension at the interface of the shuttle and the magnetic drop. Increasing the magnetic force leads to the localized deformation of the shuttle and eventually the full extraction of the magnetic drop. The versatility of the system was demonstrated through the propelling of the shuttle across a rough surface patterned with microfabricated barriers as well as taking advantage of the optical properties of the shuttle for the magnification and translation of microscale characters patterned on a planar surface. The integration of the system with current electrowetting actuation mechanisms enables the highly controlled motion of the magnetic drop on the surface of a moving shuttle. The simplicity, versatility, and controllability of the system provide opportunities for various fluid manipulation, sample preparation, and analysis for a range of chemical, biochemical, and biological applications.Primary pulmonary artery sarcoma (PAS) is extremely rare in children. Nevertheless, distinguishing primary PAS from pulmonary embolism is critical to a child's survival. Primary PAS is commonly misdiagnosed as a pulmonary embolism due to similar presenting symptoms and radiographic findings. However, compared to adults, pulmonary embolism is rare in children, especially in patients who do not have predisposing factors or hypercoagulable state. We present a child with primary PAS which mimicked pulmonary embolism on presentation but eventually was resected and is doing well 5 years after resection. In the absence of predisposing factors or hypercoagulable state, solid tumors such as primary PAS should be considered when assessing a pediatric patient with presumed pulmonary embolism.Carotid-cavernous fistula (CCF) is a pathologic communication between carotid arteries and cavernous sinus. The goal of endovascular treatment is to completely interrupt the carotid-cavernous communication with preserving normal blood flow in carotid arteries. Embolization can be performed via transarterial or transvenous access depending on anatomy and angioarchitecture of fistula. ATM inhibitor In this report, we present a 64-year-old woman with indirect CCF. Effective and safe embolization of indirect CCF was performed using distal radial access for diagnosis and navigation and cubital vein for simultaneous venous access for therapeutic endovascular manipulations, completely avoiding femoral access.Vitreoretinal surgery is among the most challenging microsurgical procedures as it requires precise tool manipulation in a constrained environment, while the tool-tissue interaction forces are at the human perception limits. While tool tip forces are certainly important, the scleral forces at the tool insertion ports are also important. Clinicians often rely on these forces to manipulate the eyeball position during surgery. Measuring sclera forces could enable valuable sensory input to avoid tissue damage, especially for a cooperatively controlled robotic assistant that otherwise removes the sensation of these familiar intraoperative forces. Previously, our group has measured sclera forces in phantom experiments. However, to the best of our knowledge, there are no published data measuring scleral forces in biological (ex-vivo/in-vivo) eye models. In this paper, we measured sclera forces in ex-vivo porcine eye model. A Fiber Bragg Grating (FBG) based force sensing instrument with a diameter of ~900 μm and a resolution of ~1 mN was used to measure the forces while the clinician-subject followed retinal vessels in manual and robot-assisted modes. Analysis of measured forces show that the average sclera force in manual mode was 133.74 mN while in robot-assisted mode was 146.03 mN.The contextual cueing effect (CCE) refers to the learned association between predictive configuration and target location, speeding up response times for targets. Previous studies have examined the underlying processes (initial perceptual process, attentional guidance, and response selection) of CCE but have not reached a general consensus on their contributions to CCE. In the present study, we used eye tracking to address this question by analyzing the oculomotor correlates of context-guided learning in visual search and eliminating indefinite response factors during response priming. The results show that both attentional guidance and response selection contribute to contextual learning.

chairolive26's listings

User has no active listings
Are you a professional seller? Create an account
Non-logged user
Hello wave
Welcome! Sign in or register