About seller
Anthropogenic activities and population growth have resulted in a reduced availability of drinking water. To ensure consistency in the existence of drinking water, it is inevitable to establish wastewater treatment plants (WWTPs). 70% of India's rural population was found to be without WWTP, waste disposal, and good sanitation. Wastewater has emerged from kitchens, washrooms, etc., with industry activities. This scenario caused severe damage to water resources, leading to degradation of water quality and pathogenic insects. Thus, it is a need of an hour to prompt for better WWTPs for both rural and urban areas. Many parts of the world have started to face severe water shortages in recent years, and wastewater reuse methods need to be updated. Clean water supply is not enough to satisfy the needs of the planet as a whole, and the majority of freshwater in the polar regions takes the form of ice and snow. The increasing population requires clean water for drinks, hygiene, irrigation, and various other applications. Lack of water and contamination of water result from human activities. 90% of wastewater is released to water systems without treatment in developing countries. Studies show that about 730 megatons of waste are annually discharged into water from sewages and other effluents. The sustenance of water resources, applying wastewater treatment technologies, and calling down the percentage of potable water has to be strictly guided by mankind. This review compares the treatment of domestic sewage to its working conditions, energy efficiency, etc. In this review, several treatment methods with different mechanisms involved in waste treatment, industrial effluents, recovery/recycling were discussed. The feasibility of bioaugmentation should eventually be tested through data from field implementation as an important technological challenge, and this analysis identifies many promising areas to be explored in the future. The manual segmentation, identification, and classification of brain tumor using magnetic resonance (MR) images are essential for making a correct diagnosis. It is, however, an exhausting and time consuming task performed by clinical experts and the accuracy of the results is subject to their point of view. Computer aided technology has therefore been developed to computerize these procedures. In order to improve the outcomes and decrease the complications involved in the process of analysing medical images, this study has investigated several methods. These include a Local Difference in Intensity - Means (LDI-Means) based brain tumor segmentation, Mutual Information (MI) based feature selection, Singular Value Decomposition (SVD) based dimensionality reduction, and both Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) based brain tumor classification. Also, this study has presented a new method named Multiple Eigenvalues Selection (MES) to choose the most meaningful features as inputs to the classifiers. This combination between unsupervised and supervised techniques formed an effective system for the grading of brain glioma. The experimental results of the proposed method showed an excellent performance in terms of accuracy, recall, specificity, precision, and error rate. They are 91.02%,86.52%, 94.26%, 87.07%, and 0.0897 respectively. The obtained results prove the significance and effectiveness of the proposed method in comparison to other state-of-the-art techniques and it can have in the contribution to an early diagnosis of brain glioma.The obtained results prove the significance and effectiveness of the proposed method in comparison to other state-of-the-art techniques and it can have in the contribution to an early diagnosis of brain glioma.Plants have evolved a complex network of components that sense and respond to diverse signals. In the present study, we have characterized OsRR6, a type-A response regulator, which is part of the two-component sensor-regulator machinery in rice. The expression of OsRR6 is induced by exogenous cytokinin and various abiotic stress treatments, including drought, cold and salinity stress. Organ-specific expression analysis revealed that its expression is high in anther and low in shoot apical meristem. The Arabidopsis plants constitutively expressing OsRR6 (OsRR6OX) exhibited reduced cytokinin sensitivity, adventitious root formation and enhanced anthocyanin accumulation in seeds. OsRR6OX plants were more tolerant to drought and salinity conditions when compared to wild-type. Brigimadlin chemical structure The hypocotyl growth in OsRR6OX seedlings was significantly inhibited under red, far-red and blue-light conditions and also a decline in transcript levels of OsRR6 was observed in rice under the above monochromatic as well as white light treatments. Transcriptome profiling revealed that the genes associated with defense responses and anthocyanin metabolism are up-regulated in OsRR6OX seedlings. Comparative transcriptome analysis showed that the genes associated with phenylpropanoid and triterpenoid biosynthesis are enriched among differentially expressed genes in OsRR6OX seedlings of Arabidopsis, which is in conformity with reanalysis of the transcriptome data performed in rice transgenics for OsRR6. Further, genes like DREB1A/CBF3, COR15A, KIN1, ERD10 and RD29A are significantly upregulated in OsRR6OX seedlings when subjected to ABA and abiotic stress treatments. Thus, a negative regulator of cytokinin signaling, OsRR6, plays a positive role in imparting abiotic stress tolerance.In this study, winter wheat G6PDH (TaG6PDH) and 6PGDH (Ta6PGDH) were investigated. Both their expression and their activity were upregulated under cold stress, suggesting that TaG6PDH and Ta6PGDH positively respond to cold stress in winter wheat. Exogenous abscisic acid (ABA) treatment markedly increased the expression and activity levels of TaG6PDH and Ta6PGDH in winter wheat under cold stress. Subsequently, TaG6PDH-and Ta6PGDH were overexpressed in Arabidopsis, and showed stronger reactive oxygen species (ROS)-scavenging ability and higher survival rate compared with wild-type (WT) plants under cold stress. In addition, we found that TaG6PDH and Ta6PGDH overexpression can promote the oxidative pentose phosphate pathway (OPPP) in the cytoplasm and peroxisomes of Arabidopsis. In summary, Arabidopsis overexpressing TaG6PDH and Ta6PGDH showed improved cold tolerance.