About seller
5Cu-HHA/PVA@MΦ2 (ionic cross-linking degree 0.5%) treatment was much smaller than that of other diabetic groups at day 12 and close to that of the wild nondiabetic control group. Therefore, this facile hydrogel strategy with multiple modulation mechanisms of immunocompromise and angiogenesis may act as a safe and effective treatment strategy for a diabetic chronic wound.Cardiovascular diseases plague human health because of the lack of transplantable small-diameter blood vessel (SDBV) grafts. Although expanded polytetrafluoroethylene (ePTFE) has the potential to be used as a biocompatible material for SDBV grafts, long-term patency is still the biggest challenge. As discussed in this paper, by virtue of a novel material formulation and a new and benign alcohol/water lubricating agent, biofunctionalized ePTFE blood vessel grafts aimed at providing long-term patency were fabricated. Compared to the most prevalent modification of PTFE, namely surface treatment, this method realized bulk treatment, which could guarantee homogeneous and long-lasting performance throughout PTFE products. These blood vessel grafts included embedded functional biomolecules, such as arginylglycylaspartic acid, heparin, and selenocystamine, using water as a solvent in paste extrusion and in the expansion of ePTFE. Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscope results confirmed the existence of these targeting biomolecules in the as-fabricated ePTFE blood vessel grafts. Meanwhile, the greatly improved biological functions of the grafts were demonstrated via live and dead assays, cell morphology, CD31 staining, nitric oxide (NO) release, and anticoagulation tests. This novel and benign material formulation and fabrication method provides an opportunity to produce multibiofunctional ePTFE blood vessel grafts in a single step, thus yielding a potent product with significant commercial and clinical potential.Polyaspartamide, derived from polysuccinimide (PSI), has the advantage of conveniently presenting desired functional groups by ring-opening addition of amine-based nucleophiles to the succinimidyl ring moieties of PSI. Using diamines with varying lengths of poly(ethylene glycol) linker, polyaspartamide presenting amine groups with controllable grafting density and length, namely, poly(2-hydroxyethyl aspartamide)-g-amino-poly(ethylene glycol) (PHEA-PEGAm) could be synthesized. This PHEA-PEGAm was then used to develop in situ forming hydrogels by Schiff base formation with aldehyde-containing alginate (Alg-ALD). By modulating the graft architecture (i.e., grafting length and density), the mechanical properties of the resulting Alg-PHEA hydrogels could be controlled in a broad range. Remarkably, the hydrogels were shown to undergo facile degradation and complete dissolution in physiological conditions, regardless of hydrogel mechanics, by the expedited hydrolysis through the action of remaining amine groups, which was also heavily influenced by the graft architecture. Lonafarnib solubility dmso Moreover, the rate of degradation could be further controlled by additional ionic cross-linking of alginate. The potential application as an injectable drug delivery system was demonstrated by measuring drug release kinetics and monitoring degradation ex vivo.Plant virus-based nanoparticles are used as self-assembled protein scaffolds for the construction of enzyme nanocarriers. To date, one-pot production and coupling of both enzymes and scaffolds by genetic conjugation have been demonstrated only in plants. Herein, we report bacterial production and in vitro self-assembly of nanofilaments for CO2 capture. Filamentous virus-like particles (VLPs) were successfully formed by genetically fusing carbonic anhydrase from Hydrogenovibrio marinus (hmCA) to the N terminus of the coat protein (CPPVY) of potato virus Y with a flexible linker. The instability of VLPs against proteolytic degradation was circumvented by the periplasmic export of the fusion protein. The truncated form of CPPVY coexpressed by internal translation was crucial for the successful formation of long filamentous VLPs by alleviating steric hindrance via hybrid assembly. The fast and economic bottom-up fabrication of highly active nanobiocatalyst allows the nanofilaments to be efficiently used and recovered in potential biocatalytic and biosensor systems.A major challenge in tissue engineering and artificial scaffolding is to combine easily tunable scaffolds biomimicking the extracellular matrix of native organs with delivery-controlled cell culturing to create fully cellularized, large artificial 3D scaffolds. Aiming at bioartificial liver construction, we present our research using galactose-functionalized, ultraporous polylactide 3D nanofiber sponges fabricated out of electrospun fibers. Sponge biomodification by blend galactosylation and in-solution coating is performed, respectively, using a polylactide-galactose carrier-copolymer that promotes cell delivery and features a pronounced autofluorescence. It allows us to verify the galactosylation success, evaluate its quality, and record dye-free, high-resolution images of the sponge network using confocal laser scanning microscopy. The galactose carrier and its impact on scaffold cellularization is validated in benchmark to several reference systems. Verification of the human hepatic cell asialoglycoprotein receptor presence and galactose interaction in culture is performed by Cu2+ receptor-blocking experiments. The culture results are extensively investigated in and ex situ to trace and quantify the cell culture progress, cell activity, and viability at different culture stages. Bioreactor cultivation of sponges reveals that the galactose carrier does not only facilitate cell adhesion but also enhances cellular distribution throughout the scaffold. The promising 3D culture results allow us to move forward to create mature in vitro liver model research systems. The elaboration into ex vivo testing platforms could help judging native cell material interactions with drugs or therapeutics, without the need of direct human or animal testing.