About seller
Pore-matrix interfaces smooth via the removal of clay mineral surface asperities, reducing the available surface area for hydrocarbon adsorption by 12-75%. Additionally, HFF-induced dissolution creates new pores with diameters ranging from 800-1400 nm, increasing the permeability of the rocks by a factor of 5-10. These two consequences of mineral dissolution likely act in concert to release hydrocarbons from the host rock and facilitate transport through the rock during unconventional reservoir production.Si has attracted considerable interest as a promising anode material for next-generation Li-ion batteries owing to its outstanding specific capacity. However, the commercialization of Si anodes has been consistently limited by severe instabilities originating from their significant volume change (approximately 300%) during the charge-discharge process. Herein, we introduce an ultrafast processing strategy of controlled multi-pulse flash irradiation for stabilizing the Si anode by modifying its physical properties in a spatially stratified manner. GSK2636771 We first provide a comprehensive characterization of the interactions between the anode materials and the flash irradiation, such as the condensation and carbonization of binders, sintering, and surface oxidation of the Si particles under various irradiation conditions (e.g., flash intensity and irradiation period). Then, we suggest an effective route for achieving superior physical properties for Si anodes, such as robust mechanical stability, high electrical conductivity, and fast electrolyte absorption, via precise adjustment of the flash irradiation. Finally, we demonstrate flash-irradiated Si anodes that exhibit improved cycling stability and rate capability without requiring costly synthetic functional binders or delicately designed nanomaterials. This work proposes a cost-effective technique for enhancing the performance of battery electrodes by substituting conventional long-term thermal treatment with ultrafast flash irradiation.Advanced transparent conductors have been studied intensively in the aspects of materials, structures, and printing methods. The material and structural advancements have been successfully accomplished with various conductive nanomaterials and spring-like structures for better electrical conductivity and high mechanical flexibility of the transparent conductors. However, the capability to print submicrometer conductive patterns directly and conformally on curved surfaces with low processing cost and high throughput remains a technological challenge to achieve, primarily because of the original two-dimensional (2D) nature of conventional lithography processes. In our study, we exploit a liquid-mediated patterning approach in the development of flexible templates, enabling printing of curvilinear silver grids in a single-step and strain-free manner at a submicrometer resolution within several minutes with minimum loss of noble metals. The template can guide arrays of receding liquid-air interfaces on curved substrates during liquid evaporation, thereby generating ordered 2D foam structures that can confine and assemble silver nanoparticles in grid patterns. The printed silver grids exhibit suitable optical, electrical, and Joule-heating performances, enabling their application in transparent heaters. Our technique has the potential to extend the existing 2D micro/nanofluidic liquid-mediated patterning approach to three-dimensional (3D) control of liquid-air interfaces for low-cost all-liquid-processed functional 3D optoelectronics in the future.Two-dimensional (2D) heterojunctions have attracted great attention due to their excellent optoelectronic properties. Until now, precisely controlling the nucleation density and stacking area of 2D heterojunctions has been of critical importance but still a huge challenge. It hampers the progress of controlled growth of 2D heterojunctions for optoelectronic devices because the potential relation between numerous growth parameters and nucleation density is always poorly understood. Herein, by cooperatively controlling three parameters (substrate temperature, gas flow rate, and precursor concentration) in modified vapor deposition growth, the nucleation density and stacking area of WS2/Bi2Se3 vertical heterojunctions were successfully modulated. High-quality WS2/Bi2Se3 vertical heterojunctions with various stacking areas were effectively grown from single and multiple nucleation sites. Moreover, the potential nucleation mechanism and efficient charge transfer of WS2/Bi2Se3 vertical heterojunctions were systematically studied by utilizing the density functional theory and photoluminescence spectra. This modified vapor deposition strategy and the proposed mechanism are helpful in controlling the nucleation density and stacking area of other heterojunctions, which plays a key role in the preparation of electronic and optoelectronic nanodevices.Electrocatalytic nitrogen reduction reaction (NRR) represents a promising alternative route for sustainable ammonia synthesis, which currently dominantly relies on the energy-intensive Haber-Bosch process, while it is significantly hampered by the sluggish reaction kinetics due to the short of glorious electrocatalysts. In this work, we report an efficient porous tin heterostructure with intimate dual interfaces for electrosynthesis of ammonia, which exhibits outstanding NRR efficiency with an NH3 yield rate and Faradaic efficiency as high as 30.3 μg h-1mg-1cat and 41.3%, respectively, and excellent stability as well at a low potential of -0.05 V (vs RHE) in 0.1 M Na2SO4 solution under ambient conditions. This matrix value is superior to the analogue Sn-based heterostructures with a single interface and outperforms the currently state-of-the-art Sn-based catalysts. Comprehensive characterizations and theoretical calculations uncovered the formation of the unique intimate dual interfaces in the tin heterostructure promoting the enhancement of the NRR process, which not only effectively exposes more active sites for stronger N2 chemisorption and activation but also accelerates the interfacial electron transfer and reduces the free energy barrier for the rate-determining *N2H formation step, highlighting the importance of the dual interface effect for the design of electrocatalysts in catalysis.