About seller
Moreover, Ce6 in carbon shell endowed the nanoplatform with photodynamic effect under 660 nm laser irradiation. The as-prepared Ce6/CuS@Carbon nanoplatform thus achieved dual-modal phototherapy under single NIR laser irradiation, significantly inhibiting tumor growth with minimal adverse effects and superior biosafety.Li-rich layered oxides (LLOs) are promising cathode materials for Li-ion batteries owing to their high capacities (>250 mAh g-1), however, they suffered from severe capacity and voltage fading caused by irreversible oxygen loss and phase changes. Herein, the structural stability of single crystalline and polycrystalline Li1.14Ni0.32Mn0.44Co0.04O2 was compared in detail. It was found that the stability of oxidized oxygen ions on the near surface was improved in single crystals, which retarded oxygen loss from surface and surficial phase changes, possibly owing to the facet regulating and low surface curvature. In addition, the formation-migration of Mn3+, one of the crucial factors that caused capacity fading of LLOs, can be mitigated by increasing Ni3+ ratio. Under the synergistic effect of low oxygen defects on the near surface and high Ni3+ ratio, stable cycling performances and higher thermal stability were obtained.Polymer nanoparticles (NPs) have attracted significant interest in the past years for drug delivery and triggered release. However, it remains a significant challenge to produce polymer NPs with controlled properties and tunable drug loading. Traditional nanoprecipitation often leads to low drug loading. This study reports the development of a new microfluidic nanoprecipitation approach for making polymer NPs with tunable drug loading up to 50%. The synthesized curcumin-loaded shellac NPs remain very stable for the period of our experiments (10 days) under acidic conditions (pH 4.5), but release the payload at neutral pH in a sustained manner. This work provides a new strategy for making drug-loaded polymer NPs with tunable drug loading and triggered release.Recently, atomically dispersed transition-metal single atom in nitrogen-doped carbon matrix as electrocatalysts has aroused general interest. However, there is no report about vanadium single atom for ORR in the literature. According to d-band center theory for transition-metals, the performance of catalysts is regulated by the electronic structure of the catalytic center which determines the intermediate adsorption kinetics. Indeed, the valence of vanadium is variable, its electron structure could be modulated by an appropriate coordination structure. Here, a novel method is developed to prepare the N and O co-coordinated vanadium single atom (V-N1O4) embedded in the carbon matrix. The catalyst displays a half-wave potential of 865 mV in base solution which surpasses 20% Pt/C, and also shows a high power density of 180 mW/cm2 in Zn-air batteries. DFT calculations reveal that the N and O coordination configuration could regulate the electron structure and geometry of vanadium to boost the electrocatalytic activity.Graphene quantum dots (GQDs) are attractive fluorescent nanoparticles that have wide applicability, are inexpensive, nontoxic, photostable, water-dispersible, biocompatible and environmental-friendly. Mito-TEMPO purchase Various strategies for the synthesis of GQDs have been reported. However, simple and efficient methods of producing GQDs with control over the size of the GQDs, and hence their optical properties, are sorely needed. Herein, an ultra-fast and efficient laser writing technique is presented as a means to produce GQDs with homogeneous size from graphene produced by the instantaneous photothermal gasification and recrystallization mechanism. Controlling the laser scan speed and output power, the yield of GQDs can reach to be about 31.458 mg/s, which shows promising potential for large-scale production. The entire process eliminates the need for chemical solvents or any other reagents. Notably, the prepared laser writing produced GQDs (LWP-GQDs) exhibit blue fluorescence under UV irradiation of 365 nm and the Commission Internationale de L'Eclairage (CIE) chromaticity coordinates is measured at (0.1721, 0.123). Overall, this method exhibits superior advantages over the complex procedures and low yields required by other existing methods, and thus has great potential for the commercial applications.In this work, perovskite intercalated montmorillonite (MMT) composite catalyst loaded by different mass fraction iron oxide, xFe2O3/LaCu0.5Co0.5O3-MMT0.2 (x was the mass fraction of Fe2O3 and x = 0.02, 0.04, 0.06), were prepared by impregnation method, and their catalytic activity were evaluated by microwave induced catalytic degradation of bisphenol A (BPA). Fe2O3 had a certain absorption effect on microwave, which could enhance the absorption property of composite material, improve the catalytic activity of catalyst. XRD, SEM, XPS and vector network analysis were used to analysis the structure, morphology, surface element composition and microwave absorption performance of the composite catalyst. The results indicated that the sample had uniform structure, a larger specific surface, a higher ratio of Oads/Olat and excellent microwave absorption performance. The effects of microwave power, pH value and H2O2 dosage on the catalytic degradation performance were studied, and 0.04Fe2O3/LCCOM0.2 had the most obvious effect on the removal of BPA. The possible reaction mechanisms were discussed by characterization and experimental results of free radical capture. The surface active sites of the catalyst could be excited by microwave to generate oxidative free radicals, which could degrade BPA through electron hole transport. Response surface methodology (RSM) was used to optimize the operation parameters for the 0.04Fe2O3/LCCOM0.2-BPA microwave degradation system.Biomaterials that are used in biological systems, such as polycarbonate urethane (PCU) knee joint implants and contact lenses, generally lack lubrication. This limits their integration with the body and impedes their function. Here, we propose a nanostructured film based on hydrophilic polysaccharide hyaluronic acid conjugated with dopamine (HADN) and zwitterionic reduced glutathione (Glu), which forms a composite coating (HADN-Glu) to enhance the lubrication between cartilage and PCU. HADN was synthesized by carbodiimide chemistry between hyaluronic acid and dopamine and deposited on PCU surface under mild oxidative conditions. Then, zwitterionic peptide-reduced glutathione was bioconjugated to HADN, forming a lubrication film. Analysis based on X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and wettability indicated that HADN and Glu had grafted successfully onto the PCU surface. Measurements of the coefficient of friction (COF), friction energy dissipation and cartilage roughness indicated that cartilage was effectively protected by the high lubrication of HADN-Glu.