About seller
Alcohol-soluble comb copolymers were synthesized from rubbery poly(oxyethylene methacrylate) (POEM) and glassy polyacrylamide (PAcAm) via economical and facile free-radical polymerization. The synthesis of comb copolymers was confirmed by Fourier-transform infrared and proton nuclear magnetic resonance spectroscopic studies. The bicontinuous microphase-separated morphology and amorphous structure of comb copolymers were confirmed by wide-angle X-ray scattering, differential scanning calorimetry, and transmission electron microscopy. With increasing POEM content in the comb copolymer, both CO2 permeability and CO2/N2 selectivity gradually increased. A mechanically strong free-standing membrane was obtained at a POEMPAcAm ratio of 7030 wt%, in which the CO2 permeability and CO2/N2 selectivity reached 261.7 Barrer (1 Barrer = 10-10 cm3 (STP) cm cm-2 s-1 cmHg-1) and 44, respectively. These values are greater than those of commercially available Pebax and among the highest separation performances reported previously for alcohol-soluble, all-polymeric membranes without porous additives. The high performances were attributed to an effective CO2-philic pathway for the ethylene oxide group in the rubbery POEM segments and prevention of the N2 permeability by glassy PAcAm chains.Rotavirus causes severe gastroenteritis in children. Although vaccines are implemented, rotavirus-related diarrhea still claims ~200,000 lives annually worldwide, mainly in low-income settings, pointing to a need for improved vaccine tactics. To meet such a public health need, a P24-VP8* nanoparticle displaying the glycan-binding VP8* domains, the major neutralizing antigens of rotavirus, was generated as a new type of rotavirus vaccine. We reported here our development of a P24-VP8* nanoparticle-based trivalent vaccine. First, we established a method to produce tag-free P24-VP8* nanoparticles presenting the VP8*s of P[8], P[4], and P[6] rotaviruses, respectively, which are the three predominantly circulating rotavirus P types globally. EKI-785 solubility dmso This approach consists of a chemical-based protein precipitation and an ion exchange purification, which may be scaled up for large vaccine production. All three P24-VP8* nanoparticle types self-assembled efficiently with authentic VP8*-glycan receptor binding function. After they were mixed as a trivalent vaccine, we showed that intramuscular immunization of the vaccine elicited high IgG titers specific to the three homologous VP8* types in mice. The resulted mouse sera strongly neutralized replication of all three rotavirus P types in cell culture. Thus, the trivalent P24-VP8* nanoparticles are a promising vaccine candidate for parenteral use against multiple P types of predominant rotaviruses.Vitamin D treatment is effective when applied topically to the skin for plaque-type psoriasis. Oral vitamin D supplementation might be effective as an adjuvant treatment option in psoriasis. This umbrella review aimed to highlight the current knowledge regarding the use of oral vitamin D for treatment of patients with psoriasis. We performed a literature search and identified 107 eligible full-text articles that were relevant to the research interest. Among these, 10 review articles were selected, and data were extracted. A data synthesis showed that only a few studies monitored oral vitamin D efficacy in patients with psoriasis. No studies investigated the optimal dose of systemic vitamin D in psoriasis. However, most studies did not observe side effects for doses within a relatively narrow range (0.25 to 2 μg/day). These results suggest that more large-scale studies are needed to determine the efficacy, optimal dose, and adverse effects of vitamin D administration in patients with psoriasis.Ferroptosis, first introduced as a new form of regulated cell death induced by erastin, is accompanied by the accumulation of iron and lipid peroxides, thus it can be inhibited either by iron chelators or by lipophilic antioxidants. In the past decade, multiple studies have introduced the potential importance of ferroptosis in many human diseases, including cancer and neurodegenerative diseases. In this review, we will discuss the genetic association of ferroptosis with neurological disorders and development of the central nervous system.Lung cancer is a leading cause of cancer-related deaths worldwide. Radiotherapy is an essential treatment modality for inoperable non-small cell lung cancer (NSCLC). Stereotactic body radiotherapy (SBRT) is the standard treatment for early-stage NSCLC because of its favorable local control (LC) compared to conventional radiotherapy. Carbon ion radiotherapy (CIRT) is a kind of external beam radiotherapy characterized by a steeper dose distribution and higher biological effectiveness. Several prospective studies have shown favorable outcomes. However, there is no direct comparison study between CIRT and SBRT to determine their benefits in the management of early-stage NSCLC. Thus, we conducted a retrospective, single-institutional, and contemporaneous comparison study, including propensity score-adjusted analyses, to clarify the differences in oncologic outcomes. The 3-year overall survival (OS) was 80.1% in CIRT and 71.6% in SBRT (p = 0.0077). The 3-year LC was 87.7% in the CIRT group and 79.1% in the SBRT group (p = 0.037). Multivariable analyses showed favorable OS and LC in the CIRT group (hazard risk [HR] = 0.41, p = 0.047; HR = 0.30, p = 0.040, respectively). Log-rank tests after propensity score matching and Cox regression analyses using propensity score confirmed these results. These data provided a positive efficacy profile of CIRT for early-stage NSCLC.Inorganically-bound core materials are used in foundries in high quantities. However, there is no validated mechanical failure criterion, which allows performing finite-element calculations on the core geometries, yet. With finite-element simulations, the cores could be optimised for various production processes from robotic core handling to the decoring process after the casting. To identify a failure criterion, we propose testing methods, that enable us to investigate the fracture behaviour of inorganically-bound core materials. These novel testing methods induce multiple bi-axial stress states into the specimens and are developed for cohesive frictional materials in general and for sand cores in particular. This allows validating failure criteria in principal stress space. We found that a Mohr-Coulomb model describes the fracture of inorganic core materials in a plane stress state quite accurately and adapted it to a failure criterion, which combines the Mohr-Coulomb model with the Weakest-Link theory in one consistent mechanical material model.