weaselgun1
weaselgun1
0 active listings
Last online 3 months ago
Registered for 3+ months
Send message All seller items (0) www.selleckchem.com/products/ds-6051b.html
About seller
The effect of recrystallization of 99.3Sn-0.7Cu wt. % solder alloy on the allotropic transition of β to α-Sn (so-called tin pest phenomenon) was investigated. Bulk samples were prepared, and an InSb inoculator was mechanically applied to their surfaces to enhance the transition. Half of the samples were used as the reference material and the other half were annealed at 180 °C for 72 h, which caused the recrystallization of the alloy. The samples were stored at -10 and -20 °C. The β-Sn to α-Sn transition was monitored using electrical resistance measurements. The expansion and separation of the tin grains during the β-Sn to α-Sn transition process were studied using scanning electron microscopy. The recrystallization of the alloy suppressed the tin pest phenomenon considerably since it decreased the number of defects in the crystal structure where heterogeneous nucleation of β-Sn to α-Sn transition could occur. In the case of InSb inoculation, the spreading of the transition towards the bulk was as fast as the spreading parallel to the surface of the sample.Recent years have witnessed much progress in medical device manufacturing and the needs of the medical industry urges modern nanomaterials science to develop novel approaches for improving the properties of existing biomaterials. One of the ways to enhance the material properties is their nanostructuring by using severe plastic deformation (SPD) techniques. For medical devices, such properties include increased strength and fatigue life, and this determines nanostructured Ti and Ti alloys to be an excellent choice for the engineering of implants with improved design for orthopedics and dentistry. Various reported studies conducted in this field enable the fabrication of medical devices with enhanced functionality. This paper reviews recent development in the field of nanostructured Ti-based materials and provides examples of the use of ultra-fine grained Ti alloys in medicine.Drug resistance of pathogenic microorganisms has become a global public health problem, which has prompted the development of new materials with antimicrobial properties. In this context, antimicrobial nanohybrids are an alternative due to their synergistic properties. In this study, we used an environmentally friendly one-step approach to synthesize graphene oxide (GO) decorated with silver nanoparticles (GO-AgNPs). By this process, spherical AgNPs of average size less than 4 nm homogeneously distributed on the surface of the partially reduced GO can be generated in the absence of any stabilizing agent, only with ascorbic acid (L-AA) as a reducing agent and AgNO3 as a metal precursor. The size of the AgNPs can be controlled by the AgNO3 concentration and temperature. https://www.selleckchem.com/products/ds-6051b.html Smaller AgNPs are obtained at lower concentrations of the silver precursor and lower temperatures. The antimicrobial properties of nanohybrids against Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, Gram-positive Staphylococcus aureus, and the yeast Candida albicans were found to be concentration- and time-dependent. C. albicans and S. aureus showed the highest susceptibility to GO-AgNPs. These nanohybrids can be used as nanofillers in polymer nanocomposites to develop materials with antimicrobial activity for applications in different areas, and another potential application could be cancer therapeutic agents.Presently, smartphones are used more and more for purposes that have nothing to do withphone calls or simple data transfers. One example is the recognition of human activity, which isrelevant information for many applications in the domains of medical diagnosis, elderly assistance,indoor localization, and navigation. The information captured by the inertial sensors of the phone(accelerometer, gyroscope, and magnetometer) can be analyzed to determine the activity performedby the person who is carrying the device, in particular in the activity of walking. Nevertheless,the development of a standalone application able to detect the walking activity starting only fromthe data provided by these inertial sensors is a complex task. This complexity lies in the hardwaredisparity, noise on data, and mostly the many movements that the smartphone can experience andwhich have nothing to do with the physical displacement of the owner. In this work, we exploreand compare several approaches for identifying the walking activity. We categorize them into twomain groups the first one uses features extracted from the inertial data, whereas the second oneanalyzes the characteristic shape of the time series made up of the sensors readings. Due to the lackof public datasets of inertial data from smartphones for the recognition of human activity underno constraints, we collected data from 77 different people who were not connected to this research.Using this dataset, which we published online, we performed an extensive experimental validationand comparison of our proposals.Similarly prepared protein isolates from blue lupin (Lupinus angustifolius) and white lupin (L. albus) were assessed in relation to their composition, functional properties, nutritional attributes and environmental impacts. Blue lupin protein isolate (BLPI) and white lupin protein isolate (WLPI) were found to be quite similar in composition, although differences in the electrophoretic protein profiles were apparent. Both lupin protein isolates (LPIs) had good protein solubility (76.9% for BLPI and 69.8% for WLPI at pH 7) and foaming properties. However, a remarkable difference in heat gelation performance was observed between BLPI and WLPI. WLPI had a minimum gelling concentration of 7% protein, whereas BLPI required 23% protein in order to form a gel. WLPI also resulted in stronger gels over a range of concentrations compared to BLPI. Nutritional properties of both LPIs were similar, with no significant differences in in vitro protein digestibility (IVPD), and both had very low trypsin inhibitor activity (TIA) and fermentable oligo-, di- and monosaccharides, and polyols (FODMAP) content. The amino acid profiles of both LPIs were also similar, with sulfur-containing amino acids (SAAs) being the limiting amino acid in each case. Environmental impacts revealed by the life cycle assessment (LCA) were almost identical for BLPI and WLPI, and in most categories the LPIs demonstrated considerably better performance per kg protein when compared to cow's whole milk powder.

weaselgun1's listings

User has no active listings
Are you a professional seller? Create an account
Non-logged user
Hello wave
Welcome! Sign in or register