About seller
Optimizing a thermoelectric material for different working points is discussed with respect to its figure-of-merit z T and power factor. The importance of the results to state-of-the-art and emerging materials is emphasized.Fokker-Planck equations are extensively employed in various scientific fields as they characterise the behaviour of stochastic systems at the level of probability density functions. Although broadly used, they allow for analytical treatment only in limited settings, and often it is inevitable to resort to numerical solutions. Here, we develop a computational approach for simulating the time evolution of Fokker-Planck solutions in terms of a mean field limit of an interacting particle system. The interactions between particles are determined by the gradient of the logarithm of the particle density, approximated here by a novel statistical estimator. The performance of our method shows promising results, with more accurate and less fluctuating statistics compared to direct stochastic simulations of comparable particle number. Taken together, our framework allows for effortless and reliable particle-based simulations of Fokker-Planck equations in low and moderate dimensions. The proposed gradient-log-density estimator is also of independent interest, for example, in the context of optimal control.Due to the nature of the Dempster combination rule, it may produce results contrary to intuition. Therefore, an improved method for conflict evidence fusion is proposed. In this paper, the belief entropy in D-S theory is used to measure the uncertainty in each evidence. First, the initial belief degree is constructed by using an improved base belief function. Then, the information volume of each evidence group is obtained through calculating the belief entropy which can modify the belief degree to get the final evidence that is more reasonable. Using the Dempster combination rule can get the final result after evidence modification, which is helpful to solve the conflict data fusion problems. The rationality and validity of the proposed method are verified by numerical examples and applications of the proposed method in a classification data set.Bistability is often encountered in association with dissipative systems far from equilibrium, such as biological, physical, and chemical phenomena. Selleckchem CBL0137 There have been various attempts to theoretically analyze the bistabilities of dissipative systems. However, there is no universal theoretical approach to determine the development of a bistable system far from equilibrium. This study shows that thermodynamic analysis based on entropy production can be used to predict the transition point in the bistable region during Rayleigh-Bénard convection using the experimental relationship between the thermodynamic flux and driving force. The bistable region is characterized by two distinct features the flux of the second state is higher than that of the first state, and the entropy production of the second state is lower than that of the first state. This thermodynamic interpretation provides new insights that can be used to predict bistable behaviors in various dissipative systems.We propose an image-based class retrieval system for ancient Roman Republican coins that can be instrumental in various archaeological applications such as museums, Numismatics study, and even online auctions websites. For such applications, the aim is not only classification of a given coin, but also the retrieval of its information from standard reference book. Such classification and information retrieval is performed by our proposed system via a user friendly graphical user interface (GUI). The query coin image gets matched with exemplar images of each coin class stored in the database. The retrieved coin classes are then displayed in the GUI along with their descriptions from a reference book. However, it is highly impractical to match a query image with each of the class exemplar images as there are 10 exemplar images for each of the 60 coin classes. Similarly, displaying all the retrieved coin classes and their respective information in the GUI will cause user inconvenience. Consequently, to avoid such brute-force matching, we incrementally vary the number of matches per class to find the least matches attaining the maximum classification accuracy. In a similar manner, we also extend the search space for coin class to find the minimal number of retrieved classes that achieve maximum classification accuracy. On the current dataset, our system successfully attains a classification accuracy of 99% for five matches per class such that the top ten retrieved classes are considered. As a result, the computational complexity is reduced by matching the query image with only half of the exemplar images per class. In addition, displaying the top 10 retrieved classes is far more convenient than displaying all 60 classes.Phase Entropy (PhEn) was recently introduced for evaluating the nonlinear features of physiological time series. PhEn has been demonstrated to be a robust approach in comparison to other entropy-based methods to achieve this goal. In this context, the present study aimed to analyze the nonlinear features of raw electrohysterogram (EHG) time series collected from women at the third trimester of pregnancy (TT) and later during term active parturition (P) by PhEn. We collected 10-min longitudinal transabdominal recordings of 24 low-risk pregnant women at TT (from 35 to 38 weeks of pregnancy) and P (>39 weeks of pregnancy). We computed the second-order difference plots (SODPs) for the TT and P stages, and we evaluated the PhEn by modifying the k value, a coarse-graining parameter. Our results pointed out that PhEn in TT is characterized by a higher likelihood of manifesting nonlinear dynamics compared to the P condition. However, both conditions maintain percentages of nonlinear series higher than 66%. We conclude that the nonlinear features appear to be retained for both stages of pregnancy despite the uterine and cervical reorganization process that occurs in the transition from the third trimester to parturition.