About seller
This work discusses a novel human-robot interface for a climbing robot for inspecting weld beads in storage tanks in the petrochemical industry. The approach aims to adapt robot autonomy in terms of the operator's experience, where a remote industrial joystick works in conjunction with an electromyographic armband as inputs. This armband is worn on the forearm and can detect gestures from the operator and rotation angles from the arm. Information from the industrial joystick and the armband are used to control the robot via a Fuzzy controller. The controller works with sliding autonomy (using as inputs data from the angular velocity of the industrial controller, electromyography reading, weld bead position in the storage tank, and rotation angles executed by the operator's arm) to generate a system capable of recognition of the operator's skill and correction of mistakes from the operator in operating time. The output from the Fuzzy controller is the level of autonomy to be used by the robot. The levels implemented are Manual (operator controls the angular and linear velocities of the robot); Shared (speeds are shared between the operator and the autonomous system); Supervisory (robot controls the angular velocity to stay in the weld bead, and the operator controls the linear velocity); Autonomous (the operator defines endpoint and the robot controls both linear and angular velocities). These autonomy levels, along with the proposed sliding autonomy, are then analyzed through robot experiments in a simulated environment, showing each of these modes' purposes. The proposed approach is evaluated in virtual industrial scenarios through real distinct operators.Blood transfusion reactions and neonatal isoerythrolysis are common events in the feline population due to the presence of natural alloantibodies in the AB blood group system. It is known that the frequency of feline blood types varies according to the geographic region and breed. Therefore, the aims of this study were to investigate the frequency of AB blood groups in non-pedigree domestic cats in Central Italy and estimate the risk of a life-threatening transfusion reaction and neonatal isoerythrolysis, caused by mismatched transfusion or incompatible random mating, respectively. The AB blood group was determined on non-pedigree domestic feline patients and potential blood donors submitted at the Veterinary Teaching Hospitals of the Universities of Teramo (Abruzzo Region, Teramo, Italy) and Perugia (Umbria Region, Teramo, Italy), and visited at veterinary practitioners in Rome (Lazio Region, Teramo, Italy) using commercial immunochromatographic cartridges and commercial agglutination cards. There were four hundred and eighty-three cats included in the study. The frequencies of the blood types were 89.9% type A, 7.0% type B, and 3.1% type AB. The probability of an acute hemolytic transfusion reaction or a neonatal isoerythrolysis was 6.5%. Although the frequency of type B in non-pedigree domestic cats living in Central Italy was relatively low, to reduce the risk of fatal transfusion reactions, blood group typing is recommended before each transfusion.The carboxyl-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) exerts a neuroprotective effect in neurodegenerative diseases via the activation of signaling pathways related to neurotrophins, and also through inhibiting apoptotic cell death. Here, we demonstrate that Hc-TeTx preserves motoneurons from chronic excitotoxicity in an in vitro model of amyotrophic lateral sclerosis. Furthermore, we found that PI3-K/Akt pathway, but not p21ras/MAPK pathway, is involved in their beneficial effects under chronic excitotoxicity. Dexamethasone in vivo Moreover, we corroborate the capacity of the Hc-TeTx to be transported retrogradely into the spinal motor neurons and also its capacity to bind to the motoneuron-like cell line NSC-34. These findings suggest a possible therapeutic tool to improve motoneuron preservation in neurodegenerative diseases such as amyotrophic lateral sclerosis.The aim of this study was to compare the muscle activity between the sling shot assisted (SS) and control (CONT) flat barbell bench press for selected external loads of 70%, 85%, 100% one-repetition maximum (1RM). Ten resistance-trained men participated in the study (age = 22.2 ± 1.9 years, body mass = 88.7 ± 11.2 kg, body height = 179.5 ± 4.1, 1RM in the bench press = 127.25 ± 25.86 kg, and strength training experience = 6 ± 2.5 years). Evaluation of peak muscle activity of the dominant body side was carried out using surface electromyography (sEMG) recorded for the triceps brachii, pectoralis major, and anterior deltoid during each attempt. The three-way repeated measure ANOVA revealed statistically significant main interaction for condition x muscle group (p less then 0.01; η2 = 0.569); load x muscle group (p less then 0.01; η2 = 0.709); and condition x load (p less then 0.01; η2 = 0.418). A main effect was also observed for condition (p less then 0.01; η2 = 0.968); load (p less then 0.01; η2 = 0.976); and muscle group (p less then 0.01; η2 = 0.977). The post hoc analysis for the main effect of the condition indicated statistically significant decrease in %MVIC for the SS compared to CONT condition (74.9 vs. 88.9%MVIC; p less then 0.01; ES = 0.39). The results of this study showed that using the SS significantly affects the muscle activity pattern of the flat bench press and results in its acute decrease in comparison to an equal load under CONT conditions. The SS device may be an effective tool both in rehabilitation and strength training protocols by increasing stability with a reduction of muscular activity of the prime movers.Polyamines (PAs) are essential metabolites in plants performing multiple functions during growth and development. Copper-containing amine oxidases (CuAOs) catalyse the catabolism of PAs and in Arabidopsis thaliana are encoded by a gene family. Two mutants of one gene family member, AtCuAOδ, showed delayed seed germination, leaf emergence, and flowering time. The height of the primary inflorescence shoot was reduced, and developmental leaf senescence was delayed. Siliques were significantly longer in mutant lines and contained more seeds. The phenotype of AtCuAOδ over-expressors was less affected. Before flowering, there was a significant increase in putrescine in AtCuAOδ mutant leaves compared to wild type (WT), while after flowering both spermidine and spermine concentrations were significantly higher than in WT leaves. The expression of GA (gibberellic acid) biosynthetic genes was repressed and the content of GA1, GA7, GA8, GA9, and GA20 was reduced in the mutants. The inhibitor of copper-containing amine oxidases, aminoguanidine hydrochloride, mimicked the effect of AtCuAOδ mutation on WT seed germination.