About seller
Sequence comparisons indicate that DcE2F1 could be an ortholog of the AtE2FA factor of Arabidopsis thaliana. Moreover, ectopic expression of the DcE2F1 cDNA in transgenic Arabidopsis plants is able to upregulate AtE2FB and promotes cell proliferation, giving rise to polycotyly with low frequency, effects that are highly similar to those observed when over-expressing AtE2FA. These results indicate that DcE2F1 is involved in the control of cell proliferation and plays important roles in the regulation of embryo and plant development.The Mediterranean region is one of the most important worldwide hotspots in terms of number of species and endemism, and multiple hypotheses have been proposed to explain how diversification occurred in this area. The contribution of different traits to the diversification process has been evaluated in different groups of plants. In the case of Centaurium (Gentianaceae), a genus with a center of diversity placed in the Mediterranean region, polyploidy seems to have been an important driver of diversification as more than half of species are polyploids. Moreover, ploidy levels are strongly geographically structured across the range of the genus, with tetraploids distributed towards more temperate areas in the north and hexaploids in more arid areas towards the south. We hypothesize that the diversification processes and biodiversity patterns in Centaurium are explained by the coupled formation of polyploid lineages and the colonization of different areas. A MCC tree from BEAST2 based on three nuclear DNA regiothe widespread clade were at the tips and in an ancestral node of the phylogeny, and were mainly hexaploid. We show how ancestral diploid lineages remained in the area of origin, whereas recent and ancestral polyploidization could have facilitated colonization and establishment in other areas.The Mediator complex controls transcription of most eukaryotic genes with individual subunits required for the control of particular gene regulons in response to various perturbations. In this study, we reveal the roles of the plant Mediator subunits MED16, MED14, and MED2 in regulating transcription in response to the phytohormone abscisic acid (ABA) and we determine which cis elements are under their control. Using synthetic promoter reporters we established an effective system for testing relationships between subunits and specific cis-acting motifs in protoplasts. Our results demonstrate that MED16, MED14, and MED2 are required for the full transcriptional activation by ABA of promoters containing both the ABRE (ABA-responsive element) and DRE (drought-responsive element). Using synthetic promoter motif concatamers, we showed that ABA-responsive activation of the ABRE but not the DRE motif was dependent on these three Mediator subunits. Furthermore, the three subunits were required for the control of water loss from leaves but played no role in ABA-dependent growth inhibition, highlighting specificity in their functions. Our results identify new roles for three Mediator subunits, provide a direct demonstration of their function and highlight that our experimental approach can be utilized to identify the function of subunits of plant transcriptional regulators.Molecular evolution of ribosomal DNA can be highly dynamic. Hundreds to thousands of copies in the genome are subject to concerted evolution, which homogenizes sequence variants to different degrees. If well homogenized, sequences are suitable for phylogeny reconstruction; if not, sequence polymorphism has to be handled appropriately. Here we investigate non-coding rDNA sequences (ITS/ETS, 5S-NTS) along with the chromosomal organization of their respective loci (45S and 5S rDNA) in diploids of the Hieraciinae. The subtribe consists of genera Hieracium, Pilosella, Andryala, and Hispidella and has a complex evolutionary history characterized by ancient intergeneric hybridization, allele sharing among species, and incomplete lineage sorting. Direct or cloned Sanger sequences and phased alleles derived from Illumina genome sequencing were subjected to phylogenetic analyses. Patterns of homogenization and tree topologies based on the three regions were compared. In contrast to most other plant groups, 5S-NTS sequend that locus number is therefore largely unsuitable to inform about species relationships in Hieracium. No consistent differences in the degree of sequence homogenization and the number of 45S rDNA loci were found, suggesting interlocus concerted evolution.Meteorological parameters and occurrences of cracking (CR), russeting (RS), and sun scald (SS) symptoms were monitored in a pomegranate cv. find more "Wonderful" orchard planted in a W-E orientation, during a 3-year study. Moreover, the efficacy of preharvest foliar sprays with acetylsalicylic acid (ASA; 0.5 mM or 1.0 mM), applied biweekly four to six times, on yield and fruit quality attributes were evaluated in a 2-year study. Fruit from the N-side of the canopy had greater CR and RS, whereas SS symptoms were lower, compared with the S-exposed part of the canopy. The N-side of the canopy had also substantially lower fruit number and yield, suggesting for an important role of light on bisexual flower formation and/or fruit set. Following the occurrences in CR and RS during the fruit maturation period, it was found that temperature fluctuation was the main cause. The presence of RS damages may also be related with increased relative humidity and water movement as symptoms were higher in years with higher values, in the N-side of the canopy and often occurred in the exposed and stylar end of the fruit. The ASA treatment substantially reduced RS by up to 57%, improved the peel red coloration, while anthocyanin, antioxidant capacity, and soluble solid contents in juice were higher. Foliar sprays with ASA did not affect yield, but induced a trend of bigger-sized fruit. In conclusion, planting in a N-S row orientation and selecting an orchard plantation site with a minimum temperature fluctuation and low relative humidity during the fruit-ripening period are measures to control CR and RS in pomegranate. ASA foliar applications proved to have beneficial effects on juice antioxidant contents, but more importantly on fruit appearance.