sugartuba9
sugartuba9
0 active listings
Last online 3 weeks ago
Registered for 3+ weeks
Send message All seller items (0) www.selleckchem.com/products/gsk2334470.html
About seller
Seleno-polysaccharides have become a major topic for research owing to their high anti-oxidative capacity and immune-enhancing activities. In this study, galactomannan (GM) was isolated from Sesbania cannabina, and next modified using HNO3-Na2SeO3 method to obtain six varieties of seleno-galactomannans (SeGMs). FT-IR and GPC results showed the changes in chemical structure of SeGMs, indicating successful combination of selenium and GM. By measuring superoxide dismutase and malondialdehyde, the SeGMs showed a stronger protective effect against H2O2-induced oxidative damage in vitro than unmodified GM using macrophage RAW264.7 cell as a model, and the effect of SeGMs-14 was prominent. However, the selenylation modification did not show any obvious effect on the immunomodulatory activity of GM, as determined by the index of tumor necrosis factor-α, interleukin-6, and interleukin-1β. Overall, the prepared SeGMs from galactomannan could potentially serve as a dietary supplement of Se or an organic antioxidant.Arabinogalactan-proteins (AGPs), important signalling molecules of the plant cell wall, are structurally extensively investigated in angiosperms, but information on AGPs in gymnosperms is still limited. We characterized AGPs from the gymnosperms Ginkgo biloba, Ephedra distachya, Encephalartos longifolius and Cycas revoluta. The protein contents are comparable to that of angiosperm AGPs. Hydroxyproline is the site of linking the carbohydrate part and was detected in all AGPs with highest concentration in Cycas AGP (1.1 % of the AGP). Interestingly, with the exception of Cycas, all AGPs contained the monosaccharide 3-O-methylrhamnose not present in angiosperm polysaccharides. The carbohydrate moieties of Cycas and Ephredra showed the main components 1,3,6-linked galactose and terminal arabinose typical of angiosperm AGPs, whereas that of Ginkgo AGP was unique with 1,4-linked galactose as dominant structural element. Bioinformatic search for glycosyltransferases in Ginkgo genome also revealed a lower number of galactosyltransferases responsible for biosynthesis of the 1,3-Gal/1,6-Gal AGP backbone.In this study, a polysaccharide from marine alga Acanthophora spicifera (PAs) was isolated and structurally characterized. Its protective potential against chemically-induced gastric mucosa injury was evaluated. The gel permeation chromatography experiments and spectroscopy spectrum showed that PAs is a sulfated polysaccharide with a high molecular mass (6.98 × 105g/mol) and degree of sulfation of 1.23, exhibiting structural characteristic typical of an agar-type polysaccharide. Experimental results demonstrated that PAs reduced the hemorrhagic gastric injury, in a dose-dependent manner. Additionally, PAs reduced the intense gastric oxidative stress, measured by glutathione (GSH) and malondialdehyde (MDA) levels. PAs also prevented the reduction of mucus levels adhered to the gastric mucosa, promoted by the aggressive effect of ethanol. In summary, the sulfated polysaccharide from A. spicifera protected the gastric mucosa through the prevention of lipid peroxidation and enhanced the defense mechanisms of the gastric mucosa, suggesting as a promising functional food as gastroprotective agent.Optical brightening agents (OBAs) are commonly used in textile and paper industry to adjust product brightness and color appearence. Continuous production processes lead to short residence time of the dyes in the fiber suspension, making it necessary to understand the kinetics of adsorption. The interaction mechanisms of OBAs with cellulose are challenging to establish as the fibrous nature of cellulosic substrates complicates acquisition of real-time data. Here, we explore the real-time adsorption of different OBAs (di, tetra- and hexasulfonated compounds) onto different cellulose surfaces using surface plasmon resonance spectroscopy. Ionic strength, surface topography and polarity were varied and yielded 0.76-11.35 mg m-2 OBA on cellulose. We identified four independent mechanisms governing OBA-cellulose interactions. These involve the polarity of the cellulose surface, the solubility of the OBA, the ionic strength during adsorption and presence of bivalent cations such as Ca2+. These results can be exploited for process optimization in related industries as they allow for a simple adjustment and experimental testing procedures including performance assessment of novel OBAs.Inspired by antimicrobial peptides (AMP) which could alleviate drug resistance pressure, antimicrobial peptide mimics (AMPMs) were designed timely. Here, carboxymethyl cellulose (CMC) -based AMPMs were constructed by introducing different diamines on CMC effectively. Firstly, CMC was degraded to be oligomers with different molecular weights, followed by amination reactions with different diamines respectively. After protonation, a series of AMPMs with different structures were synthesized successfully. Their antibacterial effect has been evaluated by dynamic growth curves and microdilution method. The images snapped by the confocal laser scanning microscope and transmission electron microscope have fully proved its great lethality. And the antibacterial mechanism measured by flow cytometry analysis and zeta potential detection demonstrated that the destruction of membrane potential leads to bacteria death. The excellent blood compatibility and negligible drug resistance has also been confirmed. In addition, the synthesis method is simple and environmental-friendly.Damage to the cell membrane is an effective method to prevent drug resistance in plant fungal diseases. Here, we proposed a negative remodeling model of the cell membrane structure induced by the C-coordinated O-carboxymethyl chitosan Cu (II) complex (O-CSLn-Cu). GSK2334470 FITC-labeled O-CSLn-Cu (FITC-O-CSLn-Cu) was first synthesized via a nucleophilic substitution reaction and confirmed by FT-IR. FITC-labeled O-CSLn-Cu could pass through the fungal cell membrane, as detected by confocal laser scanning microscopy (CLSM) coupled with fluorescein isothiocyanate (FITC)-fluorescence. O-CSLn-Cu treatment led to apparent morphological changes in the membranes of P. capsici Leonian and giant unilamellar vesicles (GUVs) by transmission electron microscopy (TEM). Then, we performed component analysis of the cell membrane from the P. capsici Leonian affected by O-CSLn-Cu with a particular interest in membrane physicochemical properties. Many unsaturated fatty acids (UFAs) and key enzymes promoting UFA synthesis of the cell membrane were downregulated.

sugartuba9's listings

User has no active listings
Are you a professional seller? Create an account
Non-logged user
Hello wave
Welcome! Sign in or register