About seller
Immunoassay analysis show raised humoral (Immunoglobulin (Ig)G1, IgG2a, IgM) and cell-mediated immune response (Interleukin (IL)-4, IL-12, and IL-17, and Interferon (IFN)-γ) induced by rHcARF1+PLGA NP. Experimental groups that were treated with the antigen-loaded NP yield higher lymphocyte proliferation than the control groups. Based on these results, we could propose that the rHcARF1 encapsulated in NP could stimulate a strong immune response in mice rather than administering alone against the infection of H. contortus.Immune checkpoint blockade using monoclonal antibodies (mAbs) able to block programmed death-1 (PD-1)/PD-L1 axis represents a promising treatment for cancer. However, it requires repetitive systemic administration of high mAbs doses, often leading to adverse effects. We generated a novel nanobody against PD-1 (Nb11) able to block PD-1/PD-L1 interaction for both mouse and human molecules. Nb11 was cloned into an adeno-associated virus (AAV) vector downstream of four different promoters (CMV, CAG, EF1α, and SFFV) and its expression was analyzed in cells from rodent (BHK) and human origin (Huh-7). Nb11 was expressed at high levels in vitro reaching 2-20 micrograms/mL with all promoters, except SFFV, which showed lower levels. Nb11 in vivo expression was evaluated in C57BL/6 mice after intravenous administration of AAV8 vectors. Nb11 serum levels increased steadily along time, reaching 1-3 microgram/mL two months post-treatment with the vector having the CAG promoter (AAV-CAG-Nb11), without evidence of toxicity. Selleckchem AM-9747 To test the antitumor potential of this vector, mice that received AAV-CAG-Nb11, or saline as control, were challenged with colon adenocarcinoma cells (MC38). AAV-CAG-Nb11 treatment prevented tumor formation in 30% of mice, significantly increasing survival. These data suggest that continuous expression of immunomodulatory nanobodies from long-term expression vectors could have antitumor effects with low toxicity.Toxoplasmosis, one of the most common parasitoses worldwide, is potentially dangerous for individuals with a weakened immune system, but specific immunoprophylaxis intended for humans is still lacking. Thus, efforts have been made to create an efficient universal vaccine for both animals and humans to overcome the shortcomings of currently used treatment methods and protect all hosts against toxoplasmosis. The current work represents a relatively new approach to vaccine development based on recombinant chimeric Toxoplasma gondii antigens. In the present research, three tetravalent chimeric proteins containing different portions of the parasite's AMA1 antigen-AMA1domainI-SAG2-GRA1-ROP1L (ANSGR), AMA1domainsII,III-SAG2-GRA1-ROP1L (ACSGR) and AMA1fullprotein-SAG2-GRA1-ROP1L (AFSGR)-were tested for their immunogenic and immunoprotective capacities. All tested proteins were immunogenic, as evidenced by the triggering of specific humoral and cellular immune responses in vaccinated C3H/HeOuJ mice, defined by the production of specific IgG (IgG1/IgG2a) antibodies in vivo and synthesis of key Th1/Th2 cytokines by Toxoplasma lysate antigen-stimulated splenocytes in vitro. Although all tested preparations provided partial protection against chronic toxoplasmosis in immunized and T. gondii-challenged mice, the intensity of the generated immunoprotection depended on the fragment of the AMA1 antigen incorporated into the chimeric antigen's structure.Dengue virus (DENV), an arbovirus, strongly activates mast cells (MCs), which are key immune cells for pathogen immune surveillance. In animal models, MCs promote clearance of local peripheral DENV infections but, conversely, also promote pathological vascular leakage when widely activated during systemic DENV infection. Since DENV is a human pathogen, we sought to ascertain whether a similar phenomenon could occur in humans by characterizing the products released by human MCs (huMCs) upon direct (antibody-independent) DENV exposure, using the phenotypically mature huMC line, ROSA. DENV did not productively infect huMCs but prompted huMC release of proteases and eicosanoids and induced a Th1-polarized transcriptional profile. In co-culture and trans-well systems, huMC products activated human microvascular endothelial cells, involving transcription of vasoactive mediators and increased monolayer permeability. This permeability was blocked by MC-stabilizing drugs, or limited by drugs targeting certain MC products. Thus, MC stabilizers are a viable strategy to limit MC-promoted vascular leakage during DENV infection in humans.In plants, thioredoxin (TRX) family proteins participate in various biological processes by regulating the oxidative stress response. However, their role in phytohormone signaling remains largely unknown. In this study, we investigated the functions of TRX proteins in Arabidopsis thaliana. Quantitative polymerase chain reaction (qPCR) experiments revealed that the expression of ARABIDOPSIS NUCLEOREDOXIN 1 (AtNRX1) is specifically induced by the application of jasmonic acid (JA) and upon inoculation with a necrotrophic fungal pathogen, Alternaria brassicicola. The AtNRX1 protein usually exists as a low molecular weight (LMW) monomer and functions as a reductase, but under oxidative stress AtNRX1 transforms into polymeric forms. However, the AtNRX1M3 mutant protein, harboring four cysteine-to-serine substitutions in the TRX domain, did not show structural modification under oxidative stress. The Arabidopsisatnrx1 null mutant showed greater resistance to A. brassicicola than wild-type plants. In addition, plants overexpressing both AtNRX1 and AtNRX1M3 were susceptible to A. brassicicola infection. Together, these findings suggest that AtNRX1 normally suppresses the expression of defense-responsive genes, as if it were a safety pin, but functions as a molecular sensor through its redox-dependent structural modification to induce disease resistance in plants.(1) Background There is increasing awareness that the quality of the indoor environment affects our health and well-being. Indoor air quality (IAQ) in particular has an impact on multiple health outcomes, including respiratory and cardiovascular illness, allergic symptoms, cancers, and premature mortality. (2) Methods We carried out a global systematic literature review on indoor exposure to selected air pollutants associated with adverse health effects, and related household characteristics, seasonal influences and occupancy patterns. We screened records from six bibliographic databases ABI/INFORM, Environment Abstracts, Pollution Abstracts, PubMed, ProQuest Biological and Health Professional, and Scopus. (3) Results Information on indoor exposure levels and determinants, emission sources, and associated health effects was extracted from 141 studies from 29 countries. The most-studied pollutants were particulate matter (PM2.5 and PM10); nitrogen dioxide (NO2); volatile organic compounds (VOCs) including benzene, toluene, xylenes and formaldehyde; and polycyclic aromatic hydrocarbons (PAHs) including naphthalene.