camelcanvas77
camelcanvas77
0 active listings
Last online 3 weeks ago
Registered for 3+ weeks
Send message All seller items (0) www.selleckchem.com/products/ibg1.html
About seller
With the increase of development and utilization of coastal tidal flats, the desertification of intertidal zone is becoming more and more serious, which will inevitably lead to changes in the distribution and migration of heavy metals. This study reported the multiphase distribution and solid-liquid partitioning of Cr, Ni, Cu, Zn, Pb and Cd in typical sandy intertidal zones and predicted the migration of heavy metals with stepwise multiple linear regression. The distribution of heavy metals in surface water was comparable with that in pore water, while the content of heavy metals in suspended solids was obviously greater than that in sediments. Compared to non-sandy sediments, the bioavailability state of heavy metals extracted from sandy sediments by diethylene triamine penta-acetic acid was much smaller. The mean partitioning coefficient values (Kd) ranged from 21.56 to 166.18, which were 10-40 times lower than those of organic-rich sediments and 100-750 times lower than those of mineral soils. The dynamics in solid clay, SOC and ORP greatly affected the variations of Kd values. Clay had a significant positive correlation with bioavailability but did not have a significant correlation with logKd, indicating that the adsorption capacity of heavy metals in the intertidal zone is not the only factor controlling heavy metal migration. Stepwise multiple linear regression analysis confirmed that the prediction equations of heavy metals are composed of multiple physicochemical factors. All predicted and tested values were of the same order of magnitude, with R2 values ranging from 0.8223 to 0.9775. Although our data focus on a single species of sandy intertidal zone, characterizing the Kd value and its relationship with site-specific factors provides different tools for assessing the probability of heavy metal contamination and migration in sandy intertidal zones.In the present research, a bioremediation process was developed using solid complex bacterial agents (SCBA) through a combined two-step biodegradation process. Four isolated strains showed high efficiency for the degradation of total petroleum hydrocarbons (TPH) and the reduction of COD of the oily sludge, at 96.6% and 92.6%, respectively. The mixed strains together with bran prepared in form of SCBA exhibited improved performance compared to individual strains, all of which had an optimal temperature of around 35 °C. The use of SCBA provided advantages over commonly used liquid media for storage and transportation. The two-step process, consisting of firstly biosurfactant-assisted oil recovery and secondly biodegradation of the remaining TPH with SCBA, demonstrated the capability for treating oily sludge with high TPH content (>10 wt%) and short process period (60 days). The large-scale (5 tons oily sludge) field test, achieving a TPH removal efficiency of 93.8% and COD reduction of 91.5%, respectively, confirmed the feasibility and superiority of the technology for industrial applications.Along with the increasing application of graphene quantum dots (GQDs) in the fields of biomedicine and neuroscience, it is important to assess the probably adverse effects of GQDs in the central nervous system (CNS) but their underlying toxic mechanisms is still unclear. In this study, we evaluate the molecular mechanisms associated with circular RNAs (circRNAs) of nitrogen-doped GQDs (N-GQDs) and amino-functionalized GQDs (A-GQDs) damaging the cell viability and cellular structure in microglia by an integrative analysis of RNA microarray. The differentially expressed circRNA (DEcircRNAs)-miRNA- differentially expressed mRNA (DEmRNAs) regulatory networks were conducted in BV2 microglial cells treated with 25 µg/mL N-GQDs, 100 µg/mL N-GQDs and 100 µg/mL A-GQDs. Based on that, the protein-coding genes in each ceRNA network were collected to do bio-functional analysis to evaluate signaling pathways that were indirectly mediated by circRNAs. Some pathways that could play indispensable roles in the neurotoxicity of N-GQDs or both two kinds of GQDs were found. Low-dosed N-GQDs exposure mainly induced inflammatory action in microglia, while high-dosed N-GQDs and A-GQDs exposure both affect olfactory transduction and GABAergic synapse. Meanwhile, several classical signaling pathways, including mTOR, ErbB and MAPK, could make diverse contributions to the neurotoxicity of both two kinds of GQDs. These circRNAs could be toxic biomarkers or protective targets in neurotoxicity of GQDs. More importantly, they emphasized the necessity of comprehensive analysis of latent molecular mechanisms through epigenetics approaches in biosafety assessment of graphene-based nanomaterials.Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the loss of both upper and lower motor neurons. Studies using metrics derived from the diffusion tensor model have documented decreased fractional anisotropy (FA) and increased mean diffusivity in the corticospinal tract (CST) and the corpus callosum (CC) in ALS. These studies, however, only focused on microstructural white matter (WM) changes, while the macrostructural alterations of WM tracts in ALS remain unknown. Moreover, studies conducted based on the diffusion tensor model cannot provide information related to specific fiber bundles and fail to clarify which biological characteristics are changing. Using a novel fixel-based analytical method that can characterize the fiber density (FD) and the fiber-bundle cross-section (FC), this study investigated both microstructural and macrostructural changes in the WM in a large cohort of patients with ALS (N = 60) compared with demographically matched healthy controls (N = 60). Compared with healthy controls, we found decreased FD, FC and fiber density and cross-section (FDC, a combined measure of the FD and FC) values in the bilateral CST and the middle posterior body of the CC in patients with ALS, suggesting not only microstructural but also macrostructural abnormalities in these fiber bundles. Additionally, we found that the mean FD and FDC values in the bilateral CST were positively correlated with the revised ALS Functional Rating Scale, indicating that these two indices may serve as potential markers for assessing the clinical severity of ALS. IBG1 Thus, these findings provide initial evidence for the existence of microstructural and macrostructural abnormalities of the fiber bundles in ALS.

camelcanvas77's listings

User has no active listings
Are you a professional seller? Create an account
Non-logged user
Hello wave
Welcome! Sign in or register