About seller
Health care systems worldwide have been facing major challenges since the outbreak of the SARS-CoV-2 pandemic. Kidney transplantation (KT) has been tremendously affected due to limited personal protective equipment (PPE) and intensive care unit (ICU) capacities. To provide valid information on risk factors for ICU admission in a high-risk cohort of old kidney recipients from old donors in the Eurotransplant Senior Program (ESP), we retrospectively conducted a bi-centric analysis. Overall, 17 (16.2%) patients out of 105 KTs were admitted to the ICU. They had a lower BMI, and both coronary artery disease (CAD) and hypertensive nephropathy were more frequent. A risk model combining BMI, CAD and hypertensive nephropathy gained a sensitivity of 94.1% and a negative predictive value of 97.8%, rendering it a valuable search test, but with low specificity (51.1%). ICU admission also proved to be an excellent parameter identifying patients at risk for short patient and graft survivals. Patients admitted to the ICU had shorter patient (1-year 57% vs. 90%) and graft (5-year 49% vs. 77%) survival. To conclude, potential kidney recipients with a low BMI, CAD and hypertensive nephropathy should only be transplanted in the ESP in times of SARS-CoV-2 pandemic if the local health situation can provide sufficient ICU capacities.To characterize the interfacial microstructure and interaction at a nanoscale has a significant meaning for the interface improvement of the nanocomposites. In this study, the interfacial microstructure and features of aligned multiwalled carbon nanotube (MWNT) and conjugated polymer polyimide (PI) with three molecular structures were investigated using small-angle X-ray scattering (SAXS), wide-angle x-ray diffraction (WAXD), and fluorescence emission spectroscopy. It was found that aligned MWNT/PI nanocomposites had a nonideal two-phase system with the interfaces belonging to long period stacking ordered structure. Attributed to the π-π stacking effect, MWNT/BTDA-MPD presented the most regular arrangement verified by fractal dimension. By adopting a one-dimension correlation function, each phase dimension in aligned MWNT/PI nanocomposites was calculated and verified by high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The π-π stacking was demonstrated to be an important interaction between MWNT and PI via WAXD and fluorescence emission spectroscopy, and it was influenced by the linkage bond between benzene rings in PIs. This work is of significance to reveal the interfacial features between conjugated polymer and carbon nanotubes (CNTs), which is favorable for the interface design of CNT-based high performance nanocomposites.Background Family planning (FP) is among the important interventions that reduce maternal mortality. Poor quality FP service is associated with lower services utilisation, in turn undermining the efforts to address maternal mortality. There is currently little research on the quality of FP services in the private sector in Ethiopia, and how it compares to FP services in public facilities. Methods A secondary data analysis of two national surveys, Ethiopia Services Provision Assessment Plus Survey 2014 and Ethiopian Demographic and Health Survey 2016, was conducted. Data from 1094 (139 private, 955 public) health facilities were analysed. In total, 3696 women were included in the comparison of users' characteristics. Logistic regression was conducted. Facility type (public vs. private) was the key exposure of interest. Results The private facilities were less likely to have implants (Adjusted Odds Ratio (AOR) = 0.06; 95% Confidence Interval (CI) 0.03, 0.12), trained FP providers (AOR = 0.23; 95% CI 0.14, 0.41) and FP guidelines/protocols (AOR = 0.33; 95% CI 0.19, 0.54) than public facilities but were more likely to have functional cell phones (AOR = 8.20; 95% CI 4.95, 13.59) and water supply (AOR = 3.37; 95% CI 1.72, 6.59). Conclusion This study highlights the need for strengthening both private and public facilities for public-private partnerships to contribute to increased FP use and better health outcomes.Conventional methods for detecting seed-borne fungi are laborious and time-consuming, requiring specialized analysts for characterization of pathogenic fungi on seed. Multispectral imaging (MSI) combined with machine vision was used as an alternative method to detect Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in black oat seeds (Avena strigosa Schreb). The seeds were inoculated with Drechslera avenae (D. selleck products avenae) and then incubated for 24, 72 and 120 h. Multispectral images of non-infested and infested seeds were acquired at 19 wavelengths within the spectral range of 365 to 970 nm. A classification model based on linear discriminant analysis (LDA) was created using reflectance, color, and texture features of the seed images. The model developed showed high performance of MSI in detecting D. avenae in black oat seeds, particularly using color and texture features from seeds incubated for 120 h, with an accuracy of 0.86 in independent validation. The high precision of the classifier showed that the method using images captured in the Ultraviolet A region (365 nm) could be easily used to classify black oat seeds according to their health status, and results can be achieved more rapidly and effectively compared to conventional methods.Naringinase is an enzymatic complex used in the deglycosylation of compounds with a high application potential in the food and pharmaceutical industries. The aim of the study was to immobilize naringinase from Aspergillus niger KMS on a magnetic carrier obtained on the basis of carob gum activated by polyethyleneimine. Response surface methodology was used to optimize naringinase immobilization taking into account the following factors pH, immobilization time, initial concentration of naringinase and immobilization temperature. The adsorption of the enzyme on a magnetic carrier was a reversible process. The binding force of naringinase was increased by crosslinking the enzyme with the carrier using dextran aldehyde. The crosslinked enzyme had better stability in an acidic environment and at a higher temperature compared to the free form. The immobilization and stabilization of naringinase by dextran aldehyde on the magnetic polysaccharide carrier lowered the activation energy, thus increasing the catalytic capacity of the investigated enzyme and increasing the activation energy of the thermal deactivation process, which confirms higher stability of the immobilized enzyme in comparison with free naringinase.