crookpint31
crookpint31
0 active listings
Last online 2 months ago
Registered for 2+ months
Send message All seller items (0) www.selleckchem.com/products/corn-oil.html
About seller
In the search for novel materials for vacuum electron sources, multi-alkali antimonides and in particular sodium-potassium-antimonides have been recently regarded as especially promising due to their favorable electronic and optical properties. In the framework of density-functional theory and many-body perturbation theory, we investigate the electronic structure and the dielectric response of two representative members of this family, namely Na2KSb and NaK2Sb. We find that both materials have a direct gap, which is on the order of 1.5 eV in Na2KSb and 1.0 eV in NaK2Sb. In either system, valence and conduction bands are dominated by Sb states withp- ands-character, respectively. The imaginary part of the dielectric function, computed upon explicit inclusion of electron-hole interactions to characterize the optical response of the materials, exhibits maxima starting from the near-infrared region, extending up to the visible and the ultraviolet band. With our analysis, we clarify that the lowest-energy excitations are non-excitonic in nature and that their binding energy is on the order of 100 meV. Our results confirm the potential of Na2KSb and NaK2Sb as photoemissive materials for vacuum electron sources, photomultipliers, and imaging devices.Objective.We will describe our clinical experience using electrical impedance tomography (EIT) in the management of mechanical ventilation in patients with acute respiratory failure and to determine to which extent EIT-guided positive end-expiratory pressure (PEEP) setting differed from clinically set values.Approach.We conducted a retrospective, observational cohort study performed in a hub centre for the treatment of acute respiratory failure and veno-venous extracorporeal membrane oxygenation (ECMO).Main results.Between January 2017 and December 2019, EIT was performed 54 times in 41 patients, not feasible only in one case because of signal instability. More than 50% was on veno-venous ECMO support. In 16 cases (30%), EIT was used for monitoring mechanical ventilation, i.e. to evaluate recruitability or sigh setting. In 37 cases (70%), EIT was used to set PEEP both with incremental (11 cases in nine patients) and decremental (26 cases, 18 patients) PEEP trial. Clinical PEEP before the decremental PEEP trial (PEEPPRE) was 14.1 ± 3.4 cmH2O and clinical PEEP set by clinicians after the PEEP trial (PEEPPOST) was 13.6 ± 3.1 (p = ns). EIT analyses demonstrated that more hypoxic patients were higher derecruited when compared to less hypoxic patients that were, on the contrary, more overdistended (p less then 0.05). No acute effects of PEEP adjustment based on EIT on respiratory mechanics or regional EIT parameters modification were observed.Significance.The variability of EIT findings in our population confirmed the need to provide ventilation settings individually tailored and EIT was confirmed to be an optimal useful clinical bedside noninvasive tool to provide real-time monitoring of the PEEP effect and ventilation distribution.Although early demonstration dates back to the mid-sixties, x-ray phase-contrast imaging (XPCI) became hugely popular in the mid-90s, thanks to the advent of 3rd generation synchrotron facilities. Its ability to reveal object features that had so far been considered invisible to x-rays immediately suggested great potential for applications across the life and the physical sciences, and an increasing number of groups worldwide started experimenting with it. At that time, it looked like a synchrotron facility was strictly necessary to perform XPCI with some degree of efficiency-the only alternative being micro-focal sources, the limited flux of which imposed excessively long exposure times. However, new approaches emerged in the mid-00s that overcame this limitation, and allowed XPCI implementations with conventional, non-micro-focal x-ray sources. One of these approaches showing particular promise for 'real-world' applications is edge-illumination XPCI this article describes the key steps in its evolution in the context of contemporary developments in XPCI research, and presents its current state-of-the-art, especially in terms of transition towards practical applications.In this work, we study theoretically the structural, electronic and transport properties of oxidized stanene using a combination of density functional theory (DFT), quantum molecular dynamics and the Landauer-Büttiker theory for the ballistic transport. Our results clearly show that oxygen adsorb onto stanene surface in both molecular or atomic forms, thus causing considerable modifications to its electronic structure and transport properties. Nevertheless, our quantum conductance calculations reveal that, in spite of oxidation, stanene still remains a good conductor that might be applied as field effect transistors, gas sensors and other devices.This study set out to investigate various deep learning frameworks for PET attenuation correction in the sinogram domain. Different models for both time-of-flight (TOF) and non-TOF PET emission data were implemented, including direct estimation of the attenuation corrected (AC) emission sinograms from the nonAC sinograms, estimation of the attenuation correction factors (ACFs) from PET emission data, correction of scattered photons prior to training of the models, and separate training of the models for each segment of the emission sinograms. A segmentation-based 2-class AC map was included as a bottom-line technique for comparison of the different models considering PET/CT AC as reference. Fifty clinical TOF PET/CT brain scans were employed for training whereas 20 were used for evaluation of the models. Quantitative analysis of the resulting PET images was carried out through region-wise standardized uptake value (SUV) bias calculation. The models relying on TOF information significantly outperformed the nonTOF models as well as the segmentation-based AC map resulting in maximum SUV bias of 6.5%, 9.5%, and 14.0%, respectively. Estimation of ACFs from either TOF or nonTOF PET emission data was very sensitive to prior scatter correction. https://www.selleckchem.com/products/corn-oil.html However, direct estimation of AC sinograms from nonAC sinograms revealed no sensitivity to scatter correction, thus obviating the need for prior scatter estimation. For TOF PET data, though direct prediction of the AC sinograms does not require prior estimation of scattered photons, it requires input/output channels equal to the number of TOF bins which might be computationally or memory-wise expensive. Prediction of the ACF matrices from TOF emission data is less demanding in terms of memory as it requires only a single channel for output. AC in the sinogram domain of TOF PET data exhibited superior performance compared to both nonTOF and segmentation-based methods. However, such models require multiple input/output channels.

crookpint31's listings

User has no active listings
Are you a professional seller? Create an account
Non-logged user
Hello wave
Welcome! Sign in or register