About seller
These results suggest that miR-34a can respond to genotoxic insults sensitively; thus, miR-34a expression has the potential to be used to evaluate genotoxicity of agents.Heavy metals are widely used in many industries in Thailand and found in the environment. Occupational exposure to heavy metals is often chronic and caused by environmental contaminations, potentially leading to mutations and cancer. Although the genotoxic effects of occupational exposure to multiple heavy metals have been extensively studied, the findings regarding their genotoxicity are conflicting. In this study, we focused on investigating the genotoxic effects of certain heavy metals mixtures, including lead (Pb), copper (Cu), zinc (Zn), and tin (Sn), to which workers are exposed in the manufacturing industry. The cytokinesis-blocked micronucleus (CBMN) assay in peripheral blood lymphocytes was performed, and DNA damage was assessed by measuring tumour-associated protein levels and 8-hydroxy-2'-deoxyguanosine (8-OHdG) generated by oxidative stress that causes cytotoxicity. The occupational exposure group included 110 workers exposed to heavy metal mixtures and 105 matched control subjects. We found stati health risk due to DNA damage.Radiation has widespread applications in medicine. However, despite the benefits of medical radiation exposures, adverse long-term health effects are cause for concern. Protein and gene biomarkers are early indicators of cellular response after low-dose exposure. We examined DNA damage by quantifying γ-H2AX foci and expression of twelve candidate genes in the blood lymphocytes of patients exposed to low doses of X-radiation during neuro-interventional procedures. Entrance surface dose (ESD; 10.92-1062.55 mGy) was measured by thermoluminescence dosimetry (TLD). Absorbed dose was estimated using γ-H2AX focus frequency and gene expression, with in vitro dose-response curves generated for the same biomarkers. γ-H2AX foci in post-exposure samples were significantly higher than in pre-exposure samples. Among the genes analysed, FDXR, ATM, BCL2, MDM2, TNFSF9, and PCNA showed increased expression; CDKN1A, DDB2, SESN1, BAX, and TNFRSF10B showed unchanged or decreased expression. Absorbed dose, estimated based on γ-H2AX focus frequency and gene expression changes, did not show any correlation with measured ESD. Patients undergoing interventional procedures receive considerable radiation doses, resulting in DNA damage and altered gene expression. Medical procedures should be carried out using the lowest radiation doses possible without compromising treatment.Kalanchoe pinnata is a medicinal plant, used mainly in African, Brazilian, and Indian traditional medicine for the treatment of several human disorders. Whole leaf extracts, crude juice of the leaves, and aqueous and organic extracts of the leaves are used. Over the last decade, ethanolic extracts have become the most popular form of Kalanchoe medicinal preparation. In this study, an ethanolic extract of this plant leaf was tested in a battery of standard regulatory genetic toxicology tests. This extract did not induce reverse mutations in the Salmonella/microsome assay but induces a weak genotoxic response in the mouse lymphoma assay and the in vivo micronucleus assay in mice. Our results indicate that this material may cause DNA damage, and its use should be restricted.We assessed the radioprotective and mitigative actions of sodium diclofenac, a non-steroidal anti-inflammatory drug using cultured human peripheral blood as a model. Both pre- and post-irradiation treatments with the drug reduced gamma radiation-induced formation of dicentric chromosome, cytochalasin-blocked micronuclei and γ-H2AX foci in human peripheral blood lymphocytes. This work supports the concept that sodium diclofenac may be a useful radiation countermeasure agent.The Ames microplate format (MPF™) is a miniaturized version of the plate agar Ames tests that takes advantage of a liquid microplate approach in 384-well plates with a color change-based readout. This method, already compared to the Ames test in Petri dishes, is used to assess the genotoxic potential of a variety of test items, including (but not limited to) chemicals, environmental samples, and drug candidates. 61 chemicals were selected from the updated recommended lists of genotoxic and non-genotoxic chemicals for assessment of the performance of new or improved genotoxicity tests and tested in up to five bacterial strains. The agreement with the data from the scientific literature (over 90%) confirms the reliability of the Ames MPF™ as a cost-effective and 3R-compliant alternative to the regulatory Ames test that allows to predict and evaluate chemicals' mutagenicity in a faster, less laborious and, if available, automatable manner.We studied the genotoxicity and cellular uptake of nanosized ( less then 50 nm) and fine ( less then 10 μm) copper oxide (CuO) particles in vitro in human bronchial epithelial (BEAS-2B) cells. NVP-AUY922 purchase In addition, the effect of dispersing the particles using bovine serum albumin (BSA) on DNA damage induction was investigated. DNA damage was assessed by the alkaline comet (single cell gel electrophoresis) assay after 3-h, 6-h and 24-h exposures. The cytokinesis-block micronucleus assay was applied to study chromosome damage. Both fine- and nanosized CuO particles induced a dose-dependent increase in DNA damage at all timepoints tested. However, nanosized CuO damaged DNA at lower doses and higher levels compared with fine CuO. Dispersing the nanoparticles in the presence of BSA (0.6 mg/mL) resulted in a small and inconsistent decrease in DNA damage compared with dispersions in serum-free cell culture medium only. CuO nanoparticles induced a clear dose-dependent increase in micronucleated cells at doses that strongly increased cytostasis and were markedly cytotoxic at 24 and 48 h. Fine CuO showed a slight induction of micronuclei. Hyperspectral microscopy indicated a substantial cellular uptake of both types of particles after a 3-h exposure to a dose of 20 μg/cm2. The number of particles internalized by the cells was higher for nanosized than fine CuO, as quantified by the frequency of spectral matches in the total cell area and by the number of spectrally matched visible particles or agglomerates per cell. The particle uptake was limited by particle size. The stronger genotoxic activity of nanosized than fine CuO particles is likely to derive from the higher cellular uptake and more effective intracellular dissolution of nanoparticles.