About seller
batatas evolved in pre-human times. We show that inferring an age estimate for Ipomoea and major clades within Ipomoea is highly problematic. Inferred divergence times are sensitive to uncertain fossil calibrations and differing assumptions about among-branch-substitution-rate-variation. Despite this uncertainty, we are able to make robust inferences about patterns of variation in diversification parameters within Ipomoea, and that the storage root of I. batatas evolved in pre-human times. Taken together, this study presents novel and generalizable insights into the implications of methodological assumptions for making inferences about macroevolutionary history. Further, by presenting novel findings relating to the temporal dynamics of evolution in Ipomoea, as well as more specifically to I. batatas, this study makes a valuable contribution to our understanding of tropical plant evolution, and the evolutionary context in which economically important crops evolve. SPOP-i-6lc Crown All rights reserved.Uncovering the genetic and evolutionary basis of cryptic speciation is a major focus of evolutionary biology. Next Generation Sequencing (NGS) allows the identification of genome-wide local adaptation signatures, but has rarely been applied to cryptic complexes - particularly in the soil milieu - as it is the case with integrative taxonomy. The earthworm genus Carpetania, comprising six previously suggested putative cryptic lineages, is a promising model to study the evolutionary phenomena shaping cryptic speciation in soil-dwelling lineages. Genotyping-By-Sequencing (GBS) was used to provide genome-wide information about genetic variability between 17 populations, and geometric morphometrics analyses of genital chaetae were performed to investigate unexplored cryptic morphological evolution. Genomic analyses revealed the existence of three cryptic species, with half of the previously-identified potential cryptic lineages clustering within them. Local adaptation was detected in more than 800 genes putatively involved in a plethora of biological functions (most notably reproduction, metabolism, immunological response and morphogenesis). Several genes with selection signatures showed shared mutations for each of the cryptic species, and genes under selection were enriched in functions related to regulation of transcription, including SNPs located in UTR regions. Finally, geometric morphometrics approaches partially confirmed the phylogenetic signal of relevant morphological characters such as genital chaetae. Our study therefore unveils that local adaptation and regulatory divergence are key evolutionary forces orchestrating genome evolution in soil fauna. Targeted sequence capture is a promising approach for large-scale phylogenomics. However, rapid evolutionary radiations pose significant challenges for phylogenetic inference (e.g. incomplete lineages sorting (ILS), phylogenetic noise), and the ability of targeted nuclear loci to resolve species trees despite such issues remains poorly studied. We test the utility of targeted sequence capture for inferring phylogenetic relationships in rapid, recent angiosperm radiations, focusing on Burmeistera bellflowers (Campanulaceae), which diversified into ∼130 species over less than 3 million years. We compared phylogenies estimated from supercontig (exons plus flanking sequences), exon-only, and flanking-only datasets with 506-546 loci (∼4.7 million bases) for 46 Burmeistera species/lineages and 10 outgroup taxa. Nuclear loci resolved backbone nodes and many congruent internal relationships with high support in concatenation and coalescent-based species tree analyses, and inferences were largely robust to effects of udies of Burmeistera and other rapid angiosperm radiations, including that such studies should analyze supercontigs to maximize the phylogenetic information content of loci. Sturgeons (Acipenseridae) are ancient fishes that have tissue-specific profiles of transcriptional responses to dioxin-like compounds (DLCs) that are unique from those generally measured in teleost fishes. Because DLCs exert their critical toxicities through activation of the aryl hydrocarbon receptor (AHR), this transcription factor has been the subject of intensive study. However, less attention has focused on the aryl hydrocarbon receptor nuclear translocator (ARNT), which is the dimerization partner of the AHR and required for AHR-mediated transcription. The present study sequenced ARNT1, ARNT2, and ARNT3 in a representative species of sturgeon, the white sturgeon (Acipenser transmontanus), and quantified tissue-specific basal transcript abundance for each ARNT and the response following exposure to the model agonist of the AHR, β-naphthoflavone. In common with other proteins in sturgeons, the amino acid sequences of ARNTs are more similar to those of tetrapods than are ARNTs of other fishes. Transcripts of ARNT1, ARNT2, and ARNT3 were detected in all tissues investigated. Expression of ARNTs are tightly regulated in vertebrates, but β-naphthoflavone caused down-regulation in liver and up-regulation in gill, while an upward trend was measured in intestine. ARNTs are dimeric partners for multiple proteins, including the hypoxia inducible factor 1α (HIF1α), which mediates response to hypoxia. A downward trend in abundance of HIF1α transcript was measured in liver of white sturgeon exposed to β-naphthoflavone. Altered expression of ARNTs and HIF1α caused by activation of the AHR might affect the ability of certain tissues in sturgeons to respond to hypoxia when co-exposed to DLCs or other agonists. Non-essential toxic metals are environmental pollutants that contaminate the marine ecosystem due to their extensive use and long-range transport (by rivers and air). Their presence into the environment is often linked to the human activity, with an expected bioaccumulation in the food chain. Within the marine animals, sea turtles may be considered as potential sentinel species for environmental assessment because of their long lifetime, habitat use and migratory nature. In this study, non-essential toxic metals in the coastal of Tyrrhenian Sea were monitored, during the 2017-2018 period, using the Mediterranean loggerhead sea turtle (Caretta caretta) as indicator species. The levels of Cadmium (Cd), Arsenic (As), Mercury (Hg) and Lead, (Pb) were determined in 30 turtles stranded in different locations along the coasts of Campania region of Southern Italy. After morphometric analysis, the non- essential toxic metal accumulation in loggerhead sea turtle muscle and organs have been measured analysing the total concentrations of metals in samples of liver, kidney, and muscle by Atomic Absorption Spectrophotometry (AAS) after microwave assisted digestion with nitric acid and hydrogen peroxide.