About seller
One prominent effect of nutrient pollution of surface waters is the mass invasion of floating plants, which can clog waterways, disrupting human use of aquatic systems. These plants are widely vilified and motivate expensive control campaigns, but their presence may be providing a poorly recognized function in the cycling of excess nutrients. The capacity for floating plants to absorb nutrients from surface water has been understood for decades, primarily from their use in constructed wetlands for wastewater treatment. Yet, in natural settings, there has not been to date any effort to quantify whether floating plant invasions represent important pools or fluxes of nutrients relative to those of the river catchments in which they occur. We found that seasonal hydrologic cycles in the Zambezi trap and flush floating plants from river choke points, such as dams and river confluences, on an annual basis. Peak plant biomass at such choke points constitutes a proxy for estimating annual plant-bound nutrient loads. We assessed the significance of floating vegetation as nutrient sinks by comparing annual plant-bound nutrient loading to conventional river nutrient loading (dissolved and particulate) for four tributaries of the Zambezi River in Zambia. We found that the relative importance of floating vegetation was greatest in the more urbanized catchments, such as the Maramba River draining the city of Livingstone, representing approximately 30% and 9% of annual digestible phosphorus and nitrogen flux respectively. We also found plant-bound phosphorus to be important in the Kafue River (19%), draining the industrial town of Kafue and extensive sugarcane plantations. These results demonstrate the great potential of floating plants to take up excess nutrients from natural river systems. Given the importance of hydrology in the life cycle of floating vegetation, controlled dam discharges may have an important role in managing them and their water quality treatment functions.Seabirds redistribute nutrients between different ecosystem compartments and over vast geographical areas. This nutrient transfer may impact both local ecosystems on seabird breeding islands and regional biogeochemical cycling, but these processes are seldom considered in local conservation plans or biogeochemical models. The island of Stora Karlsö in the Baltic Sea hosts the largest concentration of piscivorous seabirds in the region, and also hosts a large colony of insectivorous House martins Delichon urbicum adjacent to the breeding seabirds. We show that a previously reported unusually high insectivore abundance was explained by large amounts of chironomids-highly enriched in δ15N-that feed on seabird residues as larvae along rocky shores to eventually emerge as flying adults. Benthic ammonium and phosphate fluxes were up to 163% and 153% higher close to the colony (1,300 m distance) than further away (2,700 m) and the estimated nutrient release from the seabirds at were in the same order of magnitude as the loads from the largest waste-water treatment plants in the region. The trophic cascade impacting insectivorous passerines and the substantial redistribution of nutrients suggest that seabird nutrient transfer should be increasingly considered in local conservation plans and regional nutrient cycling models.Biofilm colonisation of surfaces is of critical importance in various areas ranging from indwelling medical devices to industrial setups. Of particular importance is the reduced susceptibility of bacteria embedded in a biofilm to existing antimicrobial agents. In this paper, we demonstrate that remotely actuated magnetic cantilevers grafted on a substrate act efficiently in preventing bacterial biofilm formation. When exposed to an alternating magnetic field, the flexible magnetic cantilevers vertically deflect from their initial position periodically, with an extremely low frequency (0.16 Hz). The cantilevers' beating prevents the initial stage of bacterial adhesion to the substrate surface and the subsequent biofilm growth. Our experimental data on E. coli liquid cultures demonstrate up to a 70% reduction in biofilm formation. A theoretical model has been developed to predict the amplitude of the cantilevers vertical deflection. Our results demonstrate proof-of-concept for a device that can magneto-mechanically prevent the first stage in bacterial biofilm formation, acting as on-demand fouling release active surfaces.Streptococcus pneumoniae choline kinase (sChoK) has previously been proposed as a drug target, yet the effectiveness of the first and only known inhibitor of sChoK, HC-3, is in the millimolar range. The aim of this study was thus to further validate sChoK as a potential therapeutic target by discovering more powerful sChoK inhibitors. LDH/PK and colorimetric enzymatic assays revealed two promising sChoK inhibitor leads RSM-932A and MN58b that were discovered with IC50 of 0.5 and 150 μM, respectively, and were shown to be 2-4 magnitudes more potent than the previously discovered inhibitor HC-3. Culture assays showed that the minimum inhibitory concentration (MIC) of RSM-932A and MN58b for S. pneumoniae was 0.4 μM and 10 μM, respectively, and the minimum lethal concentration (MLC) was 1.6 μM and 20 μM, respectively. Western blot monitoring of teichoic acid production revealed differential patterns in response to each inhibitor. selleckchem In addition, both inhibitors possessed a bacteriostatic mechanism of action, and neither interfered with the autolytic effects of vancomycin. Cells treated with MN58b but not RSM-932A were more sensitive to a phosphate induced autolysis with respect to the untreated cells. SEM studies revealed that MN58b distorted the cell wall, a result consistent with the apparent teichoic acid changes. Two novel and more highly potent putative inhibitors of sChoK, MN58b and RSM-932A, were characterized in this study. However, the effects of sChoK inhibitors can vary at the cellular level. sChoK inhibition is a promising avenue to follow in the development of therapeutics for treatment of S. pneumoniae. To assess Neonatal Intensive Care Unit (NICU) admissions for hypoglycemia after the introduction of the Baby Friendly Hospital Initiative (BFHI), followed by implementation of American Academy of Pediatrics recommended hypoglycemia guidelines. Retrospective review of NICU admissions for hypoglycemia. Eligible subjects were healthy infants >35 weeks gestation transferred to a NICU for hypoglycemia. Infants admitted with other pathologies were excluded. NICU admissions from 3 different 18-month epochs (1 = pre-BFHI; 2 = post-BFHI; 3 = post-BFHI+hypoglycemia guidelines) were compared. After implementation of BFHI there was a statistically significant increase in admissions for hypoglycemia (Epoch 2 = 1.23% vs Epoch 1 = 0.55%, p < 0.001). Followed by a decrease in admissions after the implementation of hypoglycemia guidelines (Epoch 2 = 1.23% vs Epoch 3 = 0.76%, p = 0.03). NICU admissions for hypoglycemia increased with the BFHI. Hypoglycemia guidelines decreased NICU admissions, but not to the pre-BFHI baseline.