About seller
These interactions are proposed to involve normal circadian/allostatic/homeostatic mechanisms that continuously influence, and are influenced by, cortical substrate remodeling/turnover and sleep/wake cycle. Understanding interactions of individual person "-omics" is becoming a central interest in precision medicine research. The present n-of-1 findings contribute to this interest and have implications for precision medicine research use of a person's cortical structural and sleep "-omics" to optimize the continuous maintenance of that individual's cortical structure, sleep, and cognitive/mental health.Poor postoperative pain (POP) control increases perioperative morbidity, prolongs hospitalization days, and causes chronic pain. However, the specific mechanism(s) underlying POP is unclear and the identification of optimal perioperative treatment remains elusive. Akt and mammalian target of rapamycin (mTOR) are expressed in the spinal cord, dorsal root ganglion, and sensory axons. Entinostat In this study, we explored the role of Akt and mTOR in pain-related behaviors induced by plantar incision in mice. Plantar incision activated spinal Akt and mTOR in a dose-dependent manner. Pre-treatment with Akt inhibitors intrathecally prevented the activation of mTOR dose-dependently. In addition, blocking the Akt-mTOR signaling cascade attenuated pain-related behaviors and spinal Fos protein expression induced by plantar incision. Our observations demonstrate that Akt-mTOR might be a potential therapeutic target for the treatment of POP.Concussion or mild traumatic brain injury (mTBI) in athletes can cause persistent symptoms, known as post-concussion syndrome (PCS), and repeated injuries may increase the long-term risk for an athlete to develop neurodegenerative diseases such as chronic traumatic encephalopathy (CTE), and Alzheimer's disease (AD). The Center for Disease Control estimates that up to 3.8 million sport-related mTBI are reported each year in the United States. Despite the magnitude of the phenomenon, there is a current lack of comprehensive prognostic indicators and research has shown that available monitoring tools are moderately sensitive to short-term concussion effects but less sensitive to long-term consequences. The overall aim of this review is to discuss novel, quantitative, and objective measurements that can predict long-term outcomes following repeated sports-related mTBIs. The specific objectives were (1) to provide an overview of the current clinical and biomechanical tools available to health practitioners to ensure recovery after mTBIs, (2) to synthesize potential biological mechanisms in animal models underlying the long-term adverse consequences of mTBIs, (3) to discuss the possible link between repeated mTBI and neurodegenerative diseases, and (4) to discuss the current knowledge about fluid biomarkers for mTBIs with a focus on novel exosomal biomarkers. The conclusions from this review are that current post-concussion clinical tests are not sufficiently sensitive to injury and do not accurately quantify post-concussion alterations associated with repeated mTBIs. In the current review, it is proposed that current practices should be amended to include a repeated symptom inventory, a cognitive assessment of executive function and impulse control, an instrumented assessment of balance, vestibulo-ocular assessments, and an improved panel of blood or exosome biomarkers.Alzheimer's disease (AD) is the most prevalent form of dementia, accounting for 60-70% of all dementias. AD is often under-diagnosed and recognized only at a later, more advanced stage, and this delay in diagnosis has been suggested as a contributing factor in the numerous unsuccessful AD treatment trials. Although there is no known cure for AD, early diagnosis is important for disease management and care. A hallmark of AD is the deposition of amyloid-β (Aβ)-containing senile neuritic plaques and neurofibrillary tangles composed of hyperphosporylated tau in the brain. However, current in vivo methods to quantify Aβ in the brain are invasive, requiring radioactive tracers and positron emission tomography. Toward development of alternative methods to assess AD progression, we focus on the retinal manifestation of AD pathology. The retina is an extension of the central nervous system uniquely accessible to light-based, non-invasive ophthalmic imaging. However, earlier studies in human retina indicate that the lirt the feasibility of using the retinal tissue to assess ocular Aβ as a surrogate measure of Aβ in the brain of individuals with AD. Specifically, mid-peripheral retina possesses more Aβ deposition than central retina, and thus may be the optimal location for future in vivo ocular imaging.The cognitive construct of prospective memory (PM) refers to the capacity to encode, retain and execute delayed intentions (e.g. to remember to buy milk on the way home). Although previous research suggests that PM performance is enhanced by healthy sleep, conclusions tend to be drawn based on designs featuring ecologically unnatural manipulations (e.g. total sleep deprivation). This study investigates whether a more common everyday experience (bedtime stress) affects next-day PM performance and, in so doing, also contributes to the heretofore inconsistent literature on stress and PM. Forty young adults received PM task instructions and were then assigned to either a stress condition (exposure to a laboratory-based stress-induction manipulation; n = 20, 9 women) or a non-stress condition (exposure to a non-stressful control manipulation; n = 20, 12 women). After completing the experimental manipulation, all participants had their objective sleep quality measured over a full night of polysomnographic monitoring. Upon awakening, they completed the PM task. Analyses detected significant between-group differences in terms of stress outcomes, sleep quality and PM performance Participants exposed to the manipulation experienced heightened signs of stress (captured using a composite variable that included self-report, psychophysiological and endocrinological measures), had longer sleep latencies and poorer sleep depth and displayed significantly longer reaction times to PM cues. An interaction between experimental condition (being exposed to the stressor) and disrupted sleep (longer sleep latency) significantly predicted poorer next-day PM reaction time. We interpret these findings as indicating that bedtime stress, which leads to heightened presleep arousal, affects sleep processes and, consequently, the deployment of attentional resources during next-day execution of a delayed intention.