About seller
Ion transport in crystalline fast ionic conductors is a complex physical phenomenon. Certain ionic species (e.g., Ag+, Cu+, Li+, F-, O2-, H+) in a solid crystalline framework can move as fast as in liquids. This property, although only observed in a limited number of materials, is a key enabler for a broad range of technologies, including batteries, fuel cells, and sensors. However, the mechanisms of ion transport in the crystal lattice of fast ionic conductors are still not fully understood despite the substantial progress achieved in the last 40 years, partly because of the wide range of length and time scales involved in the complex migration processes of ions in solids. Without a comprehensive understanding of these ion transport mechanisms, the rational design of new fast ionic conductors is not possible. In this review, we cover classical and emerging characterization techniques (both experimental and computational) that can be used to investigate ion transport processes in bulk crystalline inorganic materials which exhibit predominant ion conduction (i.e., negligible electronic conductivity) with a primary focus on literature published after 2000 and critically assess their strengths and limitations. Together with an overview of recent understanding, we highlight the need for a combined experimental and computational approach to study ion transport in solids of desired time and length scales and for precise measurements of physical parameters related to ion transport.Comparative and evolutionary analyses of metabolic networks have a wide range of applications, ranging from research into metabolic evolution through to practical applications in drug development, synthetic biology, and biodegradation. We present MAPPS Metabolic network Analysis and Pathway Prediction Server (https//mapps.lums.edu.pk), a web-based tool to study functions and evolution of metabolic networks using traditional and 'omics data sets. MAPPS provides diverse functionalities including an interactive interface, graphical visualization of results, pathway prediction and network comparison, identification of potential drug targets, in silico metabolic engineering, host-microbe interactions, and ancestral network building. Importantly, MAPPS also allows users to upload custom data, thus enabling metabolic analyses on draft and custom genomes, and has an 'omics pipeline to filter pathway results, making it relevant in today's postgenomic era.We present the analysis of a family of nanotubes (NTs) based on the quaternary misfit layered compound (MLC) YxLa1-xS-TaS2. The NTs were successfully synthesized within the whole range of possible compositions via the chemical vapor transport technique. In-depth analysis of the NTs using electron microscopy and spectroscopy proves the in-phase (partial) substitution of La by Y in the (La,Y)S subsystem and reveals structural changes compared to the previously reported LaS-TaS2 MLC-NTs. The observed structure can be linked to the slightly different lattice parameters of LaS and YS. Raman spectroscopy and infrared transmission measurements reveal the tunability of the plasmonic and vibrational properties. Density-functional theory calculations showed that the YxLa1-xS-TaS2 MLCs are stable in all compositions. Moreover, the calculations indicated that substitution of La by Sc atoms is electronically not favorable, which explains our failed attempt to synthesize these MLC and NTs thereof.A method has been developed to reliably quantify the isotopic composition of liquid water, requiring only immersion of a "ReactIR" probe in the sample under test. The accuracy and robustness of this method has been extensively tested using a deuterium/protium system, and substantial improvements in sensitivity were obtained using highly novel chemical signal amplification methods demonstrating a standard deviation of 247 ppb D (a δD of 1.6 ‰). This compares favorably with other more costly and time-consuming techniques and is over 20 times more sensitive than any previously published FTIR study. Computational simulations of a model system match the experimental data and show how these methods can be adapted to a tritium/protium system.Understanding molecular mechanisms governing interactions of glycosaminoglycans (such as heparin) with proteins remains challenging due to their enormous structural heterogeneity. Commonly accepted approaches seek to reduce the structural complexity by searching for "binding epitopes" within the limited subsets of short heparin oligomers produced either enzymatically or synthetically. A top-down approach presented in this work seeks to preserve the chemical diversity displayed by heparin by allowing the longer and structurally diverse chains to interact with the client protein. Epigenetic inhibitor order Enzymatic lysis of the protein-bound heparin chains followed by the product analysis using size exclusion chromatography with online mass spectrometry detection (SEC/MS) reveals the oligomers that are protected from lysis due to their tight association with the protein, and enables their characterization (both the oligomer length, and the number of incorporated sulfate and acetyl groups). When applied to a paradigmatic heparin/antithrombin system, the new method generates a series of oligomers with surprisingly distinct sulfation levels. The extent of sulfation of the minimal-length binder (hexamer) is relatively modest yet persistent, consistent with the notion of six sulfate groups being both essential and sufficient for antithrombin binding. However, the masses of longer surviving chains indicate complete sulfation of disaccharides beyond the hexasaccharide core. Molecular dynamics simulations confirm the existence of favorable electrostatic interactions between the high charge-density saccharide residues flanking the "canonical" antithrombin-binding hexasaccharide and the positive patch on the surface of the overall negatively charged protein. Furthermore, electrostatics may rescue the heparin/protein interaction in the absence of the canonical binding element.Here we describe a fluorescent microspheres-based separation and analysis that enables the isolation of circulating tumor cells (CTCs) from whole blood of patients with metastatic cancer and the identification of isolated CTCs in situ without immunostaining. This approach uses antibody-functionalized fluorescent polystyrene (PS) microspheres that can selectively bind to CTCs. The binding of CTCs and fluorescent PS microspheres leads to the formation of complexes of CTCs and fluorescent PS microspheres, thereby the CTCs are size-amplified and labeled simultaneously. A pyramidal microcavity array (PMCA) is fabricated using microfabrication technology to create a precise microfilter structure with a high aspect ratio. The PMCA filter device can effectively isolate microspheres-labeled CTCs, while allow hematologic cells to deform and pass through. Using this approach, CTCs are isolated and identified in 15 of 18 patients with metastatic colorectal cancer. This approach will open new possibilities for CTCs isolation and identification and can serve a versatile platform to facilitate CTCs analysis in diverse biomedical applications.