tigercard7
tigercard7
0 active listings
Last online 2 months ago
Registered for 2+ months
Send message All seller items (0) www.selleckchem.com/products/IC-87114.html
About seller
Solute-solvent interactions are key for the assembly and proper functioning of biomacromolecules and play important roles in many fields of organic and polymer chemistry. Despite numerous reports describing the effects of (chiral) solvents on helical conformations of (supramolecular) polymers, the combination of chiral solvents and chiral monomers is unexplored. Here we report diastereomeric differences in the supramolecular polymerization of enantiomers of chiral triphenylene-2,6,10-tricarboxamides in chiral chlorinated solvents. Competition between the preferences induced by the stereocentres of the assembled monomers and those present in the solvent molecules results in unforeseen temperature-dependent solvation effects. By combining experiments and mathematical modelling, we show that the observed differences between enantiomers originate from the combined additive entropic effects of stereocentres present in the monomer and in the solvent. Remarkably, copolymerizations show that the chiral solvent can bias the copolymer helicity and thereby overrule the helical preference of the monomers. Our results highlight the importance of cumulative solvation effects in supramolecular polymerizations.Gram-positive bacteria colonize mucosal tissues, withstanding large mechanical perturbations such as coughing, which generate shear forces that exceed the ability of non-covalent bonds to remain attached. To overcome these challenges, the pathogen Streptococcus pyogenes utilizes the protein Cpa, a pilus tip-end adhesin equipped with a Cys-Gln thioester bond. The reactivity of this bond towards host surface ligands enables covalent anchoring; however, colonization also requires cell migration and spreading over surfaces. The molecular mechanisms underlying these seemingly incompatible requirements remain unknown. Here we demonstrate a magnetic tweezers force spectroscopy assay that resolves the dynamics of the Cpa thioester bond under force. When folded at forces 6 pN block thioester reformation. We hypothesize that this folding-coupled reactivity switch (termed a smart covalent bond) could allow the adhesin to undergo binding and unbinding to surface ligands under low force and remain covalently attached under mechanical stress.In contrast to naturally occurring F2, O2 and N2, diatomic C2 is an intriguing species that has only been observed indirectly in the gas phase, and because of its high reactivity has eluded isolation in the condensed phase. It has previously been stabilized in L→C2←L compounds but the bonding situation of the central C2 in this motif differs remarkably from that of free C2. this website Here we have prepared and structurally characterized diatomic C2 as a monoligated complex L→C2 using a bulky phosphine ligand bearing two imidazolidin-2-iminato groups (L is (NHCR=N)2(CH3)P, where NHCR is an N-heterocyclic carbene). The compound is stable in solution at ambient temperature and has also been isolated in the solid state. Reactivity studies, in combination with quantum chemical analysis, suggest that the two carbon atoms of the L→C2 complex both have carbene character. The complex underwent intermolecular C-H bond activation upon thermolysis and exhibited hydroalkoxylation-like reactivity with methanol.Scattering resonances play a central role in collision processes in physics and chemistry. They help build an intuitive understanding of the collision dynamics due to the spatial localization of the scattering wavefunctions. For resonances that are localized in the reaction region, located at short separation behind the centrifugal barrier, sharp peaks in the reaction rates are the characteristic signature, observed recently with state-of-the-art experiments in low-energy collisions. If, however, the localization occurs outside of the reaction region, mostly the elastic scattering is modified. This may occur due to above-barrier resonances, the quantum analogue of classical orbiting. By probing both elastic and inelastic scattering of metastable helium with deuterium molecules in merged-beam experiments, we differentiate between the nature of quantum resonances-tunnelling resonances versus above-barrier resonances-and corroborate our findings by calculating the corresponding scattering wavefunctions.With adequate building blocks, metal-organic frameworks (MOFs) can combine magnetic ordering and porosity. This makes MOFs a promising platform for the development of stimuli-responsive materials that show drastically different magnetic properties depending on the presence or absence of guest molecules within their pores. Here we report a CO2-responsive magnetic MOF that converts from ferrimagnetic to paramagnetic on CO2 adsorption, and returns to the ferrimagnetic state on CO2 desorption. The ferrimagnetic material is a layered MOF with a [D+-A--D] formula, produced from the reaction of trifluorobenzoate-bridged paddlewheel-type diruthenium(II) clusters as the electron donor (D) with diethoxytetracyanoquinodimethane as the electron acceptor (A). On CO2 uptake, it undergoes an in-plane electron transfer and a structural transition to adopt a [D-A-D] paramagnetic form. This magnetic phase change, and the accompanying modifications to the electronic conductivity and permittivity of the MOF, are electronically stabilized by the guest CO2 molecules accommodated in the framework.The neuropeptide oxytocin has been popularized for its role in social behaviour and nominated as a candidate treatment for several psychiatric illnesses due to promising preclinical results. However, these results so far have failed to reliably translate from animal models to human research. In response, there have been justified calls to improve intranasal oxytocin delivery methodology in terms of verifying that intranasal administration increases central levels of oxytocin. Nonetheless, improved methodology needs to be coupled with a robust theory of the role of oxytocin in behaviour and physiology to ask meaningful research questions. Moreover, stringent methodology based on robust theory may yield interesting results, but such findings will have limited utility if they are not reproducible. We outline how the precision of intranasal oxytocin research can be improved by the complementary consideration of methodology, theory and reproducibility.

tigercard7's listings

User has no active listings
Are you a professional seller? Create an account
Non-logged user
Hello wave
Welcome! Sign in or register