About seller
Background Infusion of a complete amino acid mixture into normal late-gestation fetal sheep potentiates glucose-stimulated insulin secretion (GSIS). Leucine acutely stimulates insulin secretion in late-gestation fetal sheep and isolated fetal sheep islets in vitro. Objectives We hypothesized that a 9-d leucine infusion would potentiate GSIS in fetal sheep. Methods Columbia-Rambouillet fetal sheep at 126 days of gestation received a 9-d leucine infusion to achieve a 50%-100% increase in leucine concentrations or a control infusion. At the end of the infusion we measured GSIS, pancreatic morphology, and expression of pancreatic mRNAs. Pancreatic islet endothelial cells (ECs) were isolated from fetal sheep and incubated with supplemental leucine or vascular endothelial growth factor A (VEGFA) followed by collection of mRNA. Data measured at multiple time points were compared with a repeated-measures 2-factor ANOVA. Data measured at 1 time point were compared using Student's t test or the Mann-Whitney test. Results Glucose-stimulated insulin concentrations were 80% higher in leucine-infused (LEU) fetuses than in controls (P 5000 μm2; P less then 0.05) and a larger proportion of the pancreas that stained for β cells (12% greater; P less then 0.05). Pancreatic and pancreatic islet vascularity were both 25% greater in LEU fetuses (P less then 0.05). Pancreatic VEGFA and hepatocyte growth factor (HGF) mRNA expressions were 38% and 200% greater in LEU fetuses than in controls (P less then 0.05), respectively. In isolated islet ECs, HGF mRNA was 20% and 50% higher after incubation in supplemental leucine (P less then 0.05) or VEGFA (P less then 0.01), respectively. Conclusions A 9-d leucine infusion potentiates fetal GSIS, demonstrating that glucose and leucine act synergistically to stimulate insulin secretion in fetal sheep. A greater proportion of the pancreas being comprised of β cells and higher pancreatic vascularity contributed to the higher GSIS.Background Longer-term feeding studies suggest that a low-carbohydrate diet increases energy expenditure, consistent with the carbohydrate-insulin model of obesity. However, the validity of methodology utilized in these studies, involving doubly labeled water (DLW), has been questioned. Objective The aim of this study was to determine whether dietary energy requirement for weight-loss maintenance is higher on a low- compared with high-carbohydrate diet. Methods The study reports secondary outcomes from a feeding study in which the primary outcome was total energy expenditure (TEE). After attaining a mean Run-in weight loss of 10.5%, 164 adults (BMI ≥25 kg/m2; 70.1% women) were randomly assigned to Low-Carbohydrate (percentage of total energy from carbohydrate, fat, protein 20/60/20), Moderate-Carbohydrate (40/40/20), or High-Carbohydrate (60/20/20) Test diets for 20 wk. Calorie content was adjusted to maintain individual body weight within ± 2 kg of the postweight-loss value. In analyses by intention-to-treat (ITT, completers, n = 148) and per protocol (PP, completers also achieving weight-loss maintenance, n = 110), we compared the estimated energy requirement (EER) from 10 to 20 wk of the Test diets using ANCOVA. Results Mean EER was higher in the Low- versus High-Carbohydrate group in models of varying covariate structure involving ITT [ranging from 181 (95% CI 8-353) to 246 (64-427) kcal/d; P ≤0.04] and PP [ranging from 245 (43-446) to 323 (122-525) kcal/d; P ≤0.02]. This difference remained significant in sensitivity analyses accounting for change in adiposity and possible nonadherence. Conclusions Energy requirement was higher on a low- versus high-carbohydrate diet during weight-loss maintenance in adults, commensurate with TEE. These data are consistent with the carbohydrate-insulin model and lend qualified support for the validity of the DLW method with diets varying in macronutrient composition. This trial was registered at clinicaltrials.gov as NCT02068885.Background Dietary polyphenols including anthocyanins target multiple organs. Objective We aimed to assess the involvement of glucagon-like peptide 1 (GLP-1), leptin, insulin and fibroblast growth factor 21 (FGF21) in mediating metabolic beneficial effects of purified anthocyanin cyanidin-3-glucoside (Cy3G). Methods Intestinal proglucagon gene (Gcg; encoding GLP-1) and liver Fgf21 expression were assessed in 6-wk-old male C57BL-6J mice fed a low-fat-diet (LFD; 10% of energy from fat), alone or with 1.6 mg Cy3G/L in drinking water for 3 wk [experiment (Exp.) 1; n = 5/group]. Similar mice were fed the LFD or a high-fat diet (HFD; 60% energy from fat) with or without Cy3G for 20 wk. Half of the mice administered Cy3G also received 4 broad-spectrum antibiotics (ABs) in drinking water between weeks 11 and 14, for a total of 6 groups (n = 8/group). selleck chemicals llc Metabolic tolerance tests were conducted between weeks 2 and 16. Relevant hormone gene expression and plasma hormone concentrations were assessed mainly at the end of 20 wk (Exp. 2). Results In Exp. 1, Cy3G administration increased ileal but not colonic Gcg level by 2-fold (P 3-fold, P less then 0.05). Conclusions Dietary Cy3G may reduce body weight and exert metabolic homeostatic effects in mice via changes in hepatic FGF21.Background Dietary carbohydrate affects intestinal glucose absorption and lipid deposition, but the underlying mechanisms are unknown. Objectives We used yellow catfish and their isolated intestinal epithelial cells (IECs) to test the hypothesis that sodium/glucose cotransporters (SGLTs) 1/2 and acetylated carbohydrate response element binding protein (ChREBP) mediated glucose-induced changes in glucose absorption and lipid metabolism. Methods Yellow catfish (mean ± SEM weight 4.68 ± 0.02 g, 3 mo old, mixed sex) were fed diets containing 250 g carbohydrates/kg from glucose (G, control), corn starch (CS), sucrose (S), potato starch (PS), or dextrin (D) for 10 wk. IECs were isolated from different yellow catfish and incubated for 24 h in a control or glucose (15 mM) solution with or without a 2-h pretreatment with an inhibitor [sotagliflozin (LX-4211) or tubastatin A (TBSA)]. Human embryonic kidney cells (HEK293T cells) were transfected with a Flag-ChREBP plasmid to explore ChREBP acetylation. Triglyceride (TG) and glucose concentrations and enzymatic activities were measured in the intestine and IECs of yellow catfish.