About seller
This rationalization of such species as neutral spherical aromatic EMFs suggests the possibility of an extensive series of aromatic fullerenes with nuclearity larger than C60 buckminsterfullerene as stable building blocks towards nanostructured metal-organic materials.Biogenic dimethyl sulfide (DMS) has attracted widespread attention over several decades due to its potential role in linking ocean biology and climate. The air-to-sea exchange flux, estimated based on marine DMS concentration, offers useful information for evaluating its contribution to climate change. As such, field observation techniques with the characteristics of fast testing speed, portability and easy operation are in demand to accurately monitor the DMS in seawater. In this paper, we proposed a new strategy for the sensitive field measurement of DMS in seawater based on benzene-assisted photoionization positive ion mobility spectrometry (BAPI-PIMS) coupled with a time-resolved introduction. Benzene was employed as a dopant to improve the selectivity by keeping the other sulfur compounds from being ionized, while the two-dimensional data versus drift time and retention time were obtained via an online separating column to eliminate the adverse impact of environmental moisture. Under the optimization conditions, the LODs (S/N = 3) for two product-ion peaks (PIPs) of DMS decreased to 0.081 nmol L-1. Finally, the established method was applied to the lab and ship-board analysis of seawater from the Bohai Sea and the North Yellow Sea in the summer of 2019, and DMS in surface seawater was in the range of 0.11-23.90 nmol L-1 with an average of 9.88 ± 6.96 nmol L-1, indicating the potential for the field detection of marine DMS.Glycoproteins are closely linked to the occurrence and development of many diseases. Therefore, it is of great importance to develop highly selective, sensitive, efficient detection methods for glycoproteins. To overcome the problems with traditional detections methods, such as mass spectrometry, chromatography-mass spectrometry, and enzyme-linked immunosorbent assay, boronate affinity material (BAM)-based sensors have developed rapidly for the specific recognition and detection of glycoproteins because of the advantages of pH-controlled binding/release, reversibility of the reaction, high specificity, and high selectivity, showing their wide application prospects. In recent years, there have been many significant leaps in the use of BAMs for sensing and detecting glycoproteins, but there are still many challenges and room for development. Therefore, this review critically investigates and summarizes recent advances with BAM-based sensors for glycoprotein detection. We focus on the common boronate affinity ligands of BAMs and their grafting methods, functional materials utilized in the synthesis of BAM-based sensors, advanced technologies, and applications. Finally, we propose the remaining challenges and future perspectives to accelerate the development of BAMs, and to utilize it for further developing versatile BAMs with a variety of promising applications.Proteases play an essential role in the four sequential but overlapping phases of wound healing hemostasis, inflammation, proliferation, and remodeling. In chronic wounds, excessive protease secretion damages the newly formed extracellular matrix, thereby delaying or preventing the normal healing process. LTGO-33 Peptide-based fluorogenic sensors provide a visual platform to sense and analyze protease activity through changes in the fluorescence intensity. Here, we have developed an integrated microfluidic chip coated with multilayered fluorogenic nanofilms that can directly monitor protease activity. Fluorogenic protease sensors were chemically conjugated to polymer films coated on the surface of parallel microfluidic channels. Capillary flow layer-by-layer (CF-LbL) was used for film assembly and combined with subsequent sensor modification to establish a novel platform sensing technology. The benefits of our platform include facile fabrication and processing, controllable film nanostructure, small sample volume, and high sensitivity. We observed increased fluorescence of the LbL nanofilms when they were exposed to model recombinant proteases, confirming their responsiveness to protease activity. Increases in the nanofilms' fluorescence intensity were also observed during incubation with liquid extracted from murine infected wounds, demonstrating the potential of these films to provide real-time, in situ information about protease activity levels.Retraction of 'Intracellular fluorescent thermometry and photothermal-triggered drug release developed from gold nanoclusters and doxorubicin dual-loaded liposomes' by Rijun Gui et al., Chem. Commun., 2014, 50, 1546-1548, DOI .Microfluidic magnetophoresis is a powerful technique that is used to separate and/or isolate cells of interest from complex matrices for analysis. However, mechanical pumps are required to drive flow, limiting portability and making translation to point-of-care (POC) settings difficult. Microfluidic paper-based analytical devices (μPADs) offer an alternative to traditional microfluidic devices that do not require external pumps to generate flow. However, μPADs are not typically used for particle analysis because most particles become trapped in the porous fiber network. Here we report the ability of newly developed fast-flow microfluidic paper-based analytical devices (ffPADs) to perform magnetophoresis. ffPADs use capillary action in a gap between stacked layers of paper and transparency sheets to drive flow at higher velocities than traditional μPADs. The multi-layer ffPADs allow particles and cells to move through the gap without being trapped in the paper layers. We first demonstrate that ffPADs enable magnetic particle separations in a μPAD with a neodymium permanent magnet and study key factors that affect performance. To demonstrate utility, E. coli was used as a model analyte and was isolated from human urine before detection with a fluorescently labeled antibody. A capture efficiency of 61.5% was then obtained of E. coli labeled magnetic beads in human urine. Future studies will look at the improvement of the capture efficiency and to make this assay completely off-chip without the need of a fluorescent label. The assay and device described here demonstrate the first example of magnetophoresis in a paper based, pump free microfluidic device.