About seller
Two responses could be potentially provided to the above question First, there seems to be a significant gap between our theoretical knowledge and practice. And second that many scholars and scientists publish papers only to have a longer list of publications, and therefore publishing is viewed as a personal objective, rather than for improving communities' public health.Oral mesenchymal stem cells (MSCs) and their secretomes are considered important factors in the field of medical tissue engineering and cell free biotherapy due to their ease of access, differentiation potential, and successful therapeutic outcomes. Extracellular vesicles (EVs) and the conditioned medium (CM) from MSCs are gaining more attraction as an alternative to cell-based therapies due to the less ethical issues involved, and their easier acquisition, preservation, long term storage, sterilization, and packaging. Bone and periodontal regenerative ability of EVs and CM have been the focus of some recent studies. In this review, we looked through currently available literature regarding MSCs' EVs or conditioned medium and their general characteristics, function, and regenerative potentials. We will also review the novel applications in regenerating bone and periodontal defects. Gene copy number variants play an important role in the occurrence of neurodevelopmental disorders. Particularly, the deletion of the 16p11.2 locus is associated with autism spectrum disorder, intellectual disability, and several other features. Earlier studies highlighted the implication of Kctd13 genetic imbalance in 16p11.2 deletion through the regulation of the RHOA pathway. Here, we generated a new mouse model with a small deletion of two key exons in Kctd13. Then, we targeted the RHOA pathway to rescue the cognitive phenotypes of the Kctd13 and 16p11.2 deletion mouse models in a pure genetic background. We used a chronic administration of fasudil (HA1077), an inhibitor of the Rho-associated protein kinase, for six weeks in mouse models carrying a heterozygous inactivation of Kctd13, or the deletion of the entire 16p11.2 BP4-BP5 homologous region. We found that the small Kctd13 heterozygous deletion induced a cognitive phenotype similar to the whole deletion of the 16p11.2 homologous region, in thee relevance of the RHOA pathway as a therapeutic path for 16p11.2 deletion. In addition, they reinforce the contribution of other gene(s) involved in cognitive defects found in the 16p11.2 models in older mice.These findings confirm KCTD13 as one target gene causing cognitive deficits in 16p11.2 deletion patients, and the relevance of the RHOA pathway as a therapeutic path for 16p11.2 deletion. In addition, they reinforce the contribution of other gene(s) involved in cognitive defects found in the 16p11.2 models in older mice. The differential diagnosis of frontotemporal dementia (FTD) and Alzheimer's disease (AD) is difficult due to the overlaps of clinical symptoms. Structural magnetic resonance imaging (sMRI) presents distinct brain atrophy and potentially helps in their differentiation. In this study, we aim at deriving a novel integrated index by leveraging the volumetric measures in brain regions with significant difference between AD and FTD and developing an MRI-based strategy for the differentiation of FTD and AD. In this study, the data were acquired from three different databases, including 47 subjects with FTD, 47 subjects with AD, and 47 normal controls in the NACC database; 50 subjects with AD in the ADNI database; and 50 subjects with FTD in the FTLDNI database. The MR images of all subjects were automatically segmented, and the brain atrophy, including the AD resemblance atrophy index (AD-RAI), was quantified using AccuBrain®. A novel MRI index, named the frontotemporal dementia index (FTDI), was derived as the n atrophy in dementia, a novel index specific to FTD is proposed and validated. By combining AD-RAI and FTDI, an MRI-based decision strategy was further proposed as a promising solution for the differential diagnosis of AD and FTD in clinical practice.Brain atrophy in AD, FTD, and normal elderly shows distinct patterns. learn more In addition to AD-RAI that is designed to detect abnormal brain atrophy in dementia, a novel index specific to FTD is proposed and validated. By combining AD-RAI and FTDI, an MRI-based decision strategy was further proposed as a promising solution for the differential diagnosis of AD and FTD in clinical practice. Steinernema feltiae is an entomopathogenic nematode used in biological control programs with a global distribution. Populations of this species show phenotypic plasticity derived from local adaptation and vary in different traits, such as location and host penetration. The aim of this work was to describe a Chilean isolate of this nematode species, using integrative approaches. Nematode morphological and morphometric studies were conducted along with molecular analysis of nuclear genes. The symbiotic bacterium was also identified by sequencing the 16S rRNA gene. Some ecological characteristics were described, including the temperature requirements for the nematode life cycle and the effect of soil water content for optimal reproduction. Morphometric characterization revealed a large intra-specific variability. The isolate identity was also corroborated with the analysis of nuclear genes. Based on the 16S gene, its symbiont bacteria, Xenorhabdus bovienii, was identified. The lowest, optimal and highest t, a Chilean isolate of S. feltiae is described in detail considering morphological, molecular and ecological aspects. The isolate was shown to be efficient in soil containing water, with optimal temperatures ranging from 15 to 25 °C for host infestation and production of an abundant offspring; these characteristics would allow its potential use as control agents in a wide geographical area of the country. Environmentally induced epigenetic transgenerational inheritance of pathology and phenotypic variation has been demonstrated in all organisms investigated from plants to humans. This non-genetic form of inheritance is mediated through epigenetic alterations in the sperm and/or egg to subsequent generations. Although the combined regulation of differential DNA methylated regions (DMR), non-coding RNA (ncRNA), and differential histone retention (DHR) have been shown to occur, the integration of these different epigenetic processes remains to be elucidated. The current study was designed to examine the integration of the different epigenetic processes. A rat model of transiently exposed F0 generation gestating females to the agricultural fungicide vinclozolin or pesticide DDT (dichloro-diphenyl-trichloroethane) was used to acquire the sperm from adult males in the subsequent F1 generation offspring, F2 generation grand offspring, and F3 generation great-grand offspring. The F1 generation sperm ncRNA had substantial overlap with the F1, F2 and F3 generation DMRs, suggesting a potential role for RNA-directed DNA methylation.