About seller
In this work, a sustainable and highly efficient approach for preparing bifunctional cellulose nanocrystals (CNCs) was proposed through a mixed acid system of sulfuric acid and formic acid (FA). It was found that low-concentration (5-10 wt%) sulfuric acid can significantly improve the hydrolysis efficiency of FA (65-80 wt%), which enabled the highly efficient preparation of CNCs, i.e., the maximum yield of CNCs reached up to 70.65%. The obtained CNCs exhibited a rod-like shape with high crystallinity, and good dispersibility in both water and some organic phases. Moreover, the as-prepared CNCs exhibited high thermal stability, which is much higher than that of the traditionally sulfuric acid hydrolyzed ones. In addition, it was demonstrated that the bifunctional CNCs were able to stabilize various oils to form stable Pickering emulsion gels. Thus, this work provides a promising approach for sustainable preparation of bifunctional CNCs, which may find high-end applications in diverse fields.Longan (Dimocarpus longan Lour.) is a seasonal tropical fruit used by Chinese medicine in both fresh and dried pulp forms. Their polysaccharides have been reported to have biological activity. However, their composition and immune activity have not yet been disclosed. To fulfil this aim, hot water-soluble polysaccharides of fresh and dried longan pulp were fractionated according to their molecular weight by ultrafiltration (10, 50, 100 kDa cut off). The main polysaccharides recovered were 1,6-linked glucans branched at O-3 (4-8%), O-2 (1%), O-2,4 (0.1%), and O-3,4 (0.1%). The drying process promotes the solubility of the polysaccharides. These glucans from fresh and dried longan pulp have immunomodulatory activity, shown by in vitro phagocytosis, NO, TNF-α, and IL-6 macrophages production assays. They showed also to inhibit the inflammatory response induced by LPS. The immunological activity of these glucans seems to have different responses dependent on their molecular weight, related to the immune regulatory pathways.Highly stable and reliable monitoring of glucose is of great importance for diabetes patients. This paper describes the application of two types of polymer for developing a reliable impedimetric glucose biosensor by designing an efficient nanoporous microenvironment for enzyme loading. Polyvinyl alcohol (PVA) was used as a sacrifice polymer to prepare a uniform 3D-nanoporous ZnO (3D-NPZnO) platform through electrodeposition of ZnO/PVA layer followed by PVA elimination via annealing. The carbohydrate polymer, chitosan (CTS), with a high isoelectric point (pI = 7.0-9.0), was selected in accompanying with 3D-NPZnO (pI = 9.5) to provide a hierarchical 3D-NPZnO/CTS microenvironment of a favorable isoelectric point for glucose oxidase enzyme (pI = 4.2) loading. The characterization of structural features and monitoring of the biosensor fabrication process was performed using FE-SEM, EDX, TGA-DTG, FTIR, UV-Vis, BET-BJH, XRD, CV, and EIS techniques. The fabricated platform, which shows a wide linear range of 1.0-18.0 mM and a low detection limit of 0.2 mM for glucose determination, was successfully used for real sample analysis. The proposed fabrication method can be applied for immobilizing the other low isoelectric point enzymes and biomolecules.Polypseudorotaxane structure and polydopamine bond-based crosslinked hyaluronic acid (HA) hydrogels including donepezil-loaded microspheres were developed for subcutaneous injection. Both dopamine and polyethylene glycol (PEG) were covalently bonded to the HA polymer for catechol polymerization and inclusion complexation with alpha-cyclodextrin (α-CD), respectively. A PEG chain of HA-dopamine-PEG (HD-PEG) conjugate was threaded with α-CD to make a polypseudorotaxane structure and its pH was adjusted to 8.5 for dopamine polymerization. Poly(lactic-co-glycolic acid) (PLGA)/donepezil microsphere (PDM) was embedded into the HD-PEG network for its sustained release. The HD-PEG/α-CD/PDM 8.5 hydrogel system exhibited an immediate gelation pattern, injectability through single syringe, self-healing ability, and shear-thinning behavior. Donepezil was released from the HD-PEG/α-CD/PDM 8.5 hydrogel in a sustained pattern. Following subcutaneous injection, the weight of excised HD-PEG/α-CD/PDM 8.5 hydrogel was higher than the other groups on day 14. These findings support the clinical feasibility of the HD-PEG/α-CD/PDM 8.5 hydrogel for subcutaneous injection.β-D-glucans are proposed to have many health benefits. It is therefore important to have methods which can distinguish these from other carbohydrates present in natural products, as well as giving glucan content and structural information. Correlations between features in the CP/MAS spectra of β-D-glucans and enzyme assay determined β-D-glucan content were generally found to be poor. The β-D-glucan in dry and hydrated forms of the mushroom Ganoderma lucidum was investigated in detail by spectral peak fitting to the anomeric carbon C1 region in CP/MAS NMR spectra. Hydrated samples gave spectra with enhanced resolution and suggested that a clear distinction between β-D-glucans and other carbohydrates could be possible in the anomeric carbon C1 region. Chemical shift values for a range of carbohydrate polymers, which can be found alongside β-D-glucans, as well as the values for various linkages are given. Contamination by other carbohydrates and buffer salts is discussed.In this study, the alginate/chitosan composite aerogels based on electrostatic interactions and noncovalent crosslinking were fabricated using sol-gel method followed by freeze-drying process. The solution property results showed that with the addition of chitosan in alginate solution, a tighter network was induced by the more entangled molecular chains. The aerogel morphology observations showed that the pore diameter decreased with the increasing weight ratio of chitosan in the aerogels, but was even much lower after the crosslinking of excess alginate with calcium ions. selleck chemicals llc After crosslinking, the aerogels presented the improved thermal stability and higher mechanical properties, as well as stronger antibacterial activities against Staphylococcus aureus and Escherichia coli. Therefore, the enhanced physical and antimicrobial properties of the alginate/chitosan aerogels may be achieved by modulation of electrostatic interactions and noncovalent crosslinking, suggesting the promising applications of these composite aerogels as active food packaging materials for antimicrobial purpose.