About seller
Ventilation and mechanics of breathing are an integral part of respiratory physiology that directly affect aerosol transport and deposition in the lung. Although natural breathing pattern varies widely among individuals, breathing pattern is controllable, and by using an appropriate breathing pattern, aerosol deposition can be substantially modified for desired purposes. Effects of breathing pattern have been investigated under carefully controlled inhalation conditions covering a wide range of tidal volumes (VT) and breathing frequencies (f) or respiratory times (T = 1/f). The studies have shown that lung deposition can increase or decrease as much as two times by changing the breathing pattern. Specific functional relationships have been found between lung deposition and breathing pattern parameters such that lung deposition can be estimated for any given breathing pattern. Both VT and T have shown strong effects on lung deposition, but their influence is variable depending on particle size, particularly, ultrafine vs. micron-sized particles. VT is more influential than T for micron-sized particles whereas VT and T are equally influential for ultrafine particles. Although effects of lung morphology are difficult to study systematically, comparison between normals and patients with obstructive airway disease has shown that lung deposition is closely related with the degree of airways obstruction and can be 2-3 times greater in patients with obstructive airway disease compared to normals. Thus, breathing pattern and the status of airways obstruction should be carefully considered in designing aerosol delivery and estimating deposition dose.Ultraviolet (UV) light has long been invoked as a source of energy for prebiotic chemical synthesis, but experimental support does not involve sources of UV light that look like the young Sun. Here we experimentally investigate whether the UV flux available on the surface of early Earth, given a favorable atmosphere, can facilitate a variety of prebiotic chemical syntheses. We construct a solar simulator for the UV light of the faint young Sun on the surface of early Earth, called StarLab. We then attempt a series of reactions testing different aspects of a prebiotic chemical scenario involving hydrogen cyanide (HCN), sulfites, and sulfides under the UV light of StarLab, including hypophosphite oxidation by UV light and hydrogen sulfide, photoreduction of HCN with bisulfite, the photoanomerization of α-thiocytidine, the production of a chemical precursor of a potentially prebiotic activating agent (nitroprusside), the photoreduction of thioanhydrouridine and thioanhydroadenosine, and the oxidation of ethanol isulfite.We report on the effect of intermolecular forces on the fluctuations of supported liquid films. Using an optically induced thermal gradient, we form nanometer-thin films of wetting liquids on glass substrates, where van der Waals forces are balanced by thermocapillary forces. We show that the fluctuation dynamics of the film interface is strongly modified by intermolecular forces at lower frequencies. Data spanning three frequency decades are in excellent agreement with theoretical predictions accounting for van der Waals forces. Our results emphasize the relevance of intermolecular forces on thermal fluctuations when fluids are confined at the nanoscale.Recently, higher-order topologies have been experimentally realized, featuring topological corner modes (TCMs) between adjacent topologically distinct domains. However, they have to comply with specific spatial symmetries of underlying lattices, hence their TCMs only emerge in very limited geometries, which significantly impedes generic applications. Here, we report a general scheme of inducing TCMs in arbitrary geometry based on Dirac vortices from aperiodic Kekulé modulations. The TCMs can now be constructed and experimentally observed in square and pentagonal domains incompatible with underlying triangular lattices. Such bound modes at arbitrary corners do not require their boundaries to run along particular lattice directions. Our scheme allows an arbitrary specification of numbers and positions of TCMs, which will be important for future on-chip topological circuits. Moreover, the general scheme developed here can be extended to other classical wave systems. Our findings reveal rich physics of aperiodic modulations, and advance applications of TCMs in realistic scenarios.Conventional control strategies for nitrogen-vacancy centers in quantum sensing are based on a two-level model of their triplet ground state. However, this approach fails in regimes of weak bias magnetic fields or strong microwave pulses, as we demonstrate. To overcome this limitation, we propose a novel control sequence that exploits all three levels by addressing a hidden Raman configuration with microwave pulses tuned to the zero-field transition. We report excellent performance in typical dynamical decoupling sequences, opening up the possibility for nano-NMR operation in low field environments.Concurrent passive mode-locked and self-Q-switched operation of laser devices is modeled using the complex cubic-quintic Ginzburg-Landau equation. Experimental observations use a passively mode-locked fiber ring laser with a waveguide array as a fast saturable absorber. Saracatinib The shape of each individual self-Q-switched pulse and the periodic trains of pairs of such pulses are in a good qualitative agreement with the numerical results.The broken symmetry at structural defects such as grain boundaries (GBs) discontinues chemical bonds, leading to the emergence of new properties that are absent in the bulk owing to the couplings between the lattice and other parameters. Here, we create a two-dimensional antiferrodistortive (AFD) strontium titanate (SrTiO_3) phase at a Σ13(510)/[001] SrTiO_3 tilt GB at room temperature. We find that such an anomalous room-temperature AFD phase with the thickness of approximate six unit cells is stabilized by the charge doping from oxygen vacancies. The localized AFD originated from the strong lattice-charge couplings at a SrTiO_3 GB is expected to play important roles in the electrical and optical activity of GBs and can explain past experiments such as the transport properties of electroceramic SrTiO_3. Our study also provides new strategies to create low-dimensional anomalous elements for future nanoelectronics via grain boundary engineering.