About seller
Variant I predicts that, for successful maintenance of LTP, either 1) PKMζ contributes to synaptic tagging, or 2) a low constitutive tag level persists during maintenance independent of PKMζ, or 3) maintenance of LTP is independent of tagging. Variant II maintains LTP and suggests persistent CaMKII activation could maintain PKMζ activity, a feedforward interaction not previously considered. However, we note data challenging the CaMKII feedback loop. In Variant III synaptic reactivation drives, and thus predicts, recurrent or persistent activation of CamKII and other necessary kinases, plausibly contributing to persistent elevation of PKMζ levels. Reactivation is thus predicted to sustain recurrent rounds of synaptic tagging and incorporation of plasticity-related proteins. We also suggest (model variant IV) that synaptic reactivation and autonomous kinase activation could synergistically maintain LTP. We propose experiments that could discriminate these maintenance mechanisms.Findings suggest a positive impact of bilingualism on cognition, including the later onset of dementia. However, it is not clear to what extent these effects are influenced by variations in attentional control demands in response to specific task requirements. In this study, 20 bilingual and 20 monolingual older adults performed a task-switching task under explicit task-cuing vs. memory-based switching conditions. In the cued condition, task switches occurred in random order and a visual cue signaled the next task to be performed. In the memory-based condition, the task alternated after every second trial in a predictable sequence without presenting a cue. The performance of bilinguals did not vary across experimental conditions, whereas monolinguals experienced a pronounced increase in response latencies and error rates in the cued condition. Both groups produced similar switch costs (difference in performance on switch trials as opposed to repeating trials within the mixed-task block) and mixing costs (difference in performance on repeat trials of a mixed-task block as opposed to trials of a single-task block), but bilinguals produced them with lower response latencies. The cognitive benefits of bilingualism seem not to apply to executive functions per se but to affect specific cognitive processes that involve task-relevant context processing. The present results suggest that lifelong bilingualism could promote in older adults a flexible adjustment to environmental cues, but only with increased task demands. However, due to the small sample size, the results should be interpreted with caution.The judgement of human ability is ubiquitous, from school admissions to job performance reviews. The exact make-up of ability traits, however, is often narrowly defined and lacks a comprehensive basis. We attempt to simplify the spectrum of human ability, similar to how five personality traits are widely believed to describe most personalities. Finding such a basis for human ability would be invaluable since neuropsychiatric disease diagnoses and symptom severity are commonly related to such differences in performance. Here, we identified four underlying ability traits within the National Institutes of Health Toolbox normative data (n = 1, 369) (1) Motor-endurance, (2) Emotional processing, (3) Executive and cognitive function, and (4) Social interaction. We used the Human Connectome Project young adult dataset (n = 778) to show that Motor-endurance and Executive and cognitive function were reliably associated with specific brain functional networks (r2 = 0.305 ± 0.021), and the biological nature of these ability traits was also shown by calculating their heritability (31 and 49%, respectively) from twin data.Purpose This experimental cross-sectional research study examined the emotional reactivity and emotion regulation in preschool-age children who do (CWS) and do not stutter (CWNS) by assessing their psychophysiological response during rest and while viewing pictures from the International Affective Picture System (Lang et al., 2008). Method Participants were 18 CWS (16 boys and two girls; mean age 4 years, 5 months) and 18 age- and gender-matched CWNS. Participants' psychophysiological responses were measured during two baselines and two picture viewing conditions. Skin conductance level (SCL) and heart rate were measured to assess emotional reactivity. Respiratory sinus arrhythmia (RSA) was measured to assess emotional regulation. Participants' shyness and executive function were assessed via parent report and considered for their effects on participants' psychophysiological responses. Results First, CWNS and CWS did not differ in their initial baseline SCL, heart rate, or RSA, but all participants had higherate, and also employed more emotional regulation, indexed by a greater decrease in RSA, compared to CWNS. Preschool-age children's behavior is largely dominated by reactivity, but there is the emergence of regulation, which can help children adjust to various contextual demands. For CWS who are more emotionally reactive, regulatory skills may be particularly critical to their prognosis and treatment.In the human-computer interaction (HCI), electroencephalogram (EEG) access for automatic emotion recognition is an effective way for robot brains to perceive human behavior. In order to improve the accuracy of the emotion recognition, a method of EEG access for emotion recognition based on a deep hybrid network was proposed in this paper. Firstly, the collected EEG was decomposed into four frequency band signals, and the multiscale sample entropy (MSE) features of each frequency band were extracted. Secondly, the constructed 3D MSE feature matrices were fed into a deep hybrid network for autonomous learning. Bexotegrast chemical structure The deep hybrid network was composed of a continuous convolutional neural network (CNN) and hidden Markov models (HMMs). Lastly, HMMs trained with multiple observation sequences were used to replace the artificial neural network classifier in the CNN, and the emotion recognition task was completed by HMM classifiers. The proposed method was applied to the DEAP dataset for emotion recognition experiments, and the average accuracy could achieve 79.