peanutjail15
peanutjail15
0 active listings
Last online 3 weeks ago
Registered for 3+ weeks
Send message All seller items (0) www.selleckchem.com/products/ABT-263.html
About seller
In order to diagnose the electron cyclotron resonance (ECR) plasma, a high-efficiency collimation system has been developed at the Institute of Modern Physics, and the bremsstrahlung spectra in the range of 10 keV-300 keV were measured on a third generation superconducting ECR ion source, SECRAL-II, with a CdTe detector. Used as a comparative index of the mean energy of the high energy electron population, the spectral temperature, Ts, is derived through a linear fitting of the spectra in a semi-logarithmic representation. The influences of some main source parameters, such as the neutral gas pressure, extraction voltage, microwave power, and bias disk voltage, on the high energy electrons are systemically investigated.This work shows a combined setup of Diffuse Reflectance FT-IR Spectroscopy (DRIFTS) and electrochemical characterization by AC and DC methods for in situ and operando investigations of surface species during CO2 electrolysis on metal oxide electrodes and their correlation with electrochemical activity. A high-temperature reaction chamber enables conducting DRIFTS and electrochemical experiments simultaneously at temperatures up to 1000 °C in both reductive and oxidative reaction atmospheres and under anodic and cathodic polarization conditions. A dedicated gas- and electrical feedthrough solution is presented, which is the key element required for recording electrochemical AC and DC characteristics using an electrochemical cell, which is simultaneously studied by DRIFTS experiments under realistic operation conditions. Selected results, obtained on a gadolinium doped ceria model solid oxide electrolysis cell upon different polarization states, demonstrate the basic functionality and capabilities of the setup and show how the simultaneous DRIFT-spectroscopic and electrochemical investigation of the surface and bulk chemistry on electrode materials leads to increased insight in the population of potential intermediates during CO2 electrolysis. find more With infrared spectroscopy and impedance spectroscopy as common and complementary spectroscopic methods in material science, the setup is considered to exhibit a huge potential in a wide field of fundamental and applied mechanistic research.A novel resonant linear piezoelectric motor based on a synchronized switching stimulated by harmonic synthesized mechanical square wave was designed in this study. The driving mechanism of the motor was also investigated. The periodic square wave motions of the clutch and the vibrator were generated by composing two sinusoidal resonant bending vibrations with a frequency ratio of 13. The linear motion of the motor output shaft can be realized through the cooperation between the clutch and the vibrator. An experimental device was established to validate the working principle and evaluate the performance of the motor. The prototype motor reached the maximum no-load velocity of 16.35 mm/s with a clutch driving voltage of 200 Vp-p and a vibrator driving voltage of 240 Vp-p for a base frequency of 809 Hz. The maximum traction force of 5.64 N was obtained under the clutch driving voltage of 200 Vp-p and the vibrator driving voltage of 160 Vp-p for a base frequency of 809 Hz. The motor achieved a net efficiency of 21.43% with a load of 2.25 N.Single electron sources have been studied as a device to establish an electric current standard for 30 years and recently as an on-demand coherent source for fermion quantum optics. In order to construct the single electron source on a GaAs/AlGaAs two-dimensional electron gas (2DEG), it is often necessary to fabricate a sub-micrometer wire by etching. We have established techniques to fabricate the wire made of the fragile 2DEG by combining photolithography and electron beam lithography with one-step photoresist coating, which enables us to etch fine and coarse structures simultaneously. It has been demonstrated that the fabricated single electron source pumps a fixed number of electrons per cycle with radio frequency. The fabrication technique improves the lithography process with lower risk of damage to the 2DEG.Filtered diode array spectrometers are routinely employed to infer the temporal evolution of spectral power from x-ray sources, but uniquely extracting spectral content from a finite set of broad, spectrally overlapping channel spectral sensitivities is decidedly nontrivial in these under-determined systems. We present the use of genetic algorithms to reconstruct a probabilistic spectral intensity distribution and compare to the traditional approach most commonly found in the literature. Unlike many of the previously published models, spectral reconstructions from this approach are neither limited by basis functional forms nor do they require a priori spectral knowledge. While the original intent of such measurements was to diagnose the temporal evolution of spectral power from quasi-blackbody radiation sources-where the exact details of spectral content were not thought to be crucial-we demonstrate that this new technique can greatly enhance the utility of the diagnostic by providing more physical spectra and improved robustness to hardware configuration for even strongly non-Planckian distributions.We developed micro-liquid enclosure arrays (MLEAs) for holding solution samples in coherent diffractive imaging (CDI) using x-ray free-electron lasers (XFELs). Hundreds of fully isolated micro-liquid enclosures are arranged in a single MLEA chip for efficient measurement, where each enclosure is destroyed after exposure to a single XFEL pulse. A semi-automated MLEA assembling system was also developed to enclose solution samples into MLEAs efficiently at high precision. We performed XFEL-based CDI experiments using MLEAs and imaged in-solution structures of self-assembled gold nanoparticles. The sample hit rate can be optimized by adjusting solution concentration, and we achieved a single-particle hit rate of 31%, which is not far from the theoretical upper limit of 37% derived from the Poisson statistics. MELAs allow us to perform CDI measurement under controlled solution conditions and will help reveal the nanostructures and dynamics of particles in solution.

peanutjail15's listings

User has no active listings
Are you a professional seller? Create an account
Non-logged user
Hello wave
Welcome! Sign in or register