About seller
Heavy metal contamination caused by industrial discharge is a challenging environmental issue. Herein, an efficient adsorbent based on few-layered magnetic graphene oxide (FLMGO) was fabricated, characterized, and utilized to remove aqueous Cd(II) and Cu(II). Results present that the two components graphene oxide (GO) and Fe3O4 of FLMGO promote mutually, enabling FLMGO to outperform either GO or Fe3O4. Specifically, FLMGO adsorbs Cd(II) and Cu(II) with adsorption quantities of 401.14 and 1114.22 mg·g-1 in 5 and 7 min, respectively. Moreover, FLMGO can be readily recovered via magnetic separation using a hand-held magnet. Adsorptions are spontaneous, endothermic, and entropy increasing, which are the best described by the Freundlich and pseudo-second-order model. The interaction mechanism is as follows lone pair electrons in C=O- and C-O-related groups were coordinated toward Cd(II) and Cu(II) to induce chemical interaction. The high adsorption efficiency endows FLMGO with encouraging application potential in heavy metal remediation.HIV-infected cells persist for decades in patients administered with antiretroviral therapy (ART). Meanwhile, an alarming surge in drug-resistant HIV viruses has been occurring. Addressing these issues, we propose the application of photoimmunotherapy (PIT) against not only HIV Env-expressing cells but also HIV. Previously, we showed that a human anti-gp41 antibody (7B2) conjugated to cationic or anionic photosensitizers (PSs) could specifically target and kill the HIV Env-expressing cells. Here, our photolysis studies revealed that the binding of photoimmunoconjugates (PICs) on the membrane of HIV Env-expressing cells is sufficient to induce necrotic cell death due to physical damage to the membrane by singlet oxygen, which is independent of the type of PSs. This finding persuaded us to study the virus photoinactivation of PICs using two HIV-1 strains, X4 HIV-1 NL4-3 and JR-CSF virus. We observed that the PICs could destroy the viral strains, probably via physical damage on the HIV envelope. In conclusion, we report the application of PIT as a possible dual-tool for HIV immunotherapy and ART by killing HIV-expressing cells and cell-free HIV, respectively.Cu2S-MoSe2 was selected as a gas-sensing material to detect NO2 and NH3. Based on density functional theory calculations, the adsorption structures, density of states, molecular orbit, and recovery time were studied to analyze the gas-sensing mechanism of Cu2S-MoSe2 to gases. Calculation results show that Cu2S clusters receive a stable doping structure on the MoSe2 surface. Compared with intrinsic MoSe2, Cu2S-MoSe2 shows more excellent adsorption performance to NO2 and NH3 due to the active feature of the Cu2S dopant. selleck inhibitor After NO2 and NH3 adsorption, the energy gap decreases, indicating an improvement of the conductivity, which is greatly significant for gas sensing. For double NH3 adsorption, the conductivity of the entire system increases more than that of a double NO2 adsorption system, signifying the sensitivity of Cu2S-MoSe2 is greater for NH3 than NO2. The results of theoretical recovery time show that Cu2S-MoSe2 is sensitive for NH3 detection at room temperature (298 K) and NO2 detection at high temperature (400 K).Component transportation is one of the main mechanisms for numerical simulation in microbial oil recovery. However, the research on the component transportation considering the inhibition of metabolites is very limited. A mathematical model of oil displacement in a microorganism system including microbial growth and metabolism equation, component transport equation, and porous media physical property variation equation was established in this paper. The equation was discretized and solved by implicit pressure and explicit saturation. The MATLAB simulation results showed that the chromatographic separation between microorganisms and nutrients happened because of the adsorption of porous media and the activity of microorganisms during the transportation, and the separation degree of the chromatography became higher as the permeability became lower and the injection speed became slower. The multislug alternative injection mode could reduce the degree of chromatographic separation, and the recovery rate can be increased to 50.82%. The results of this study could provide theoretical guidance for the popularization and application of microbial enhanced oil recovery (MEOR).Herein, we report the synthesis of two new manganese-based luminescent metal-organic frameworks (LMOFs) [Mn0.5(tipe)(1,4-ndc)] n (1) and [Mn(tipe)(1,4-ndc) (H2O)·(DMF)2·(H2O)3] n (2) [tipe = 1,1,2,2-tetrakis(4-(1H-imidazol-1-yl)phenyl)ethene (tipe) and 1,4-ndc = 1,4-naphthalenedicarboxylic acid] constructed from an aggregation-induced emission (AIE) chromophore ligand. Compound 1 can undergo a facile single-crystal-to-single-crystal transformation to form compound 2, which results in an increase in dimensionality from a two-dimensional (2D) network to a three-dimensional (3D) network. Both compounds demonstrate excellent performance for the solution-phase detection of Fe3+ ions through a significant and rapid quench in luminescence emission. Fluorescence titration experiments reveal that compound 2 is more selective toward Fe3+ compared to compound 1 because of its 3D stacking mode. The K sv value for compound 2 (32 378 M-1) is twice as large as that for compound 1 (15 854 M-1) for the detection of Fe3+ ions. We attribute this significant increase in performance to the increase in dimensionality. In addition, compound 2 demonstrates high selectivity and sensitivity for the detection of Cr3+ cations and Cr2O7 2- anions.Aluminum hydroxide is an effective defluoridation adsorbent; however, the poor defluoridation performance limits its wide application. In this work, amorphous and crystalline AlOOH adsorbents are synthesized through hydrolysis of Al salts, and their defluoridation performances are evaluated in terms of adsorption capacity and rate, sensitivity to pH value, and water quality after defluoridation. The defluoridation performance of AlOOH is closely related to the hydrolysis pH value, but hardly to the type of Al salts. The adsorbent can remove >95% fluoride in the first 2 min and reach adsorption equilibrium within 2 h, and the maximum defluoridation capacity is 41.9 mg/g. Furthermore, the adsorbent exhibits an excellent defluoridation efficiency at a wide pH range of 4.5-10.5. After fluoride removal, the adsorbents prepared at pH values of 6 and 7 exhibit low residual Al concentration. The Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) results confirm that the fluoride removal mechanism is the ligand exchange between fluoride and hydroxyl groups.