About seller
MRCC is a package of ab initio and density functional quantum chemistry programs for accurate electronic structure calculations. The suite has efficient implementations of both low- and high-level correlation methods, such as second-order Møller-Plesset (MP2), random-phase approximation (RPA), second-order algebraic-diagrammatic construction [ADC(2)], coupled-cluster (CC), configuration interaction (CI), and related techniques. It has a state-of-the-art CC singles and doubles with perturbative triples [CCSD(T)] code, and its specialties, the arbitrary-order iterative and perturbative CC methods developed by automated programming tools, enable achieving convergence with regard to the level of correlation. The package also offers a collection of multi-reference CC and CI approaches. Efficient implementations of density functional theory (DFT) and more advanced combined DFT-wave function approaches are also available. Its other special features, the highly competitive linear-scaling local correlation schemes, allow for MP2, RPA, ADC(2), CCSD(T), and higher-order CC calculations for extended systems. Local correlation calculations can be considerably accelerated by multi-level approximations and DFT-embedding techniques, and an interface to molecular dynamics software is provided for quantum mechanics/molecular mechanics calculations. All components of MRCC support shared-memory parallelism, and multi-node parallelization is also available for various methods. For academic purposes, the package is available free of charge.The WIEN2k program is based on the augmented plane wave plus local orbitals (APW+lo) method to solve the Kohn-Sham equations of density functional theory. The APW+lo method, which considers all electrons (core and valence) self-consistently in a full-potential treatment, is implemented very efficiently in WIEN2k, since various types of parallelization are available and many optimized numerical libraries can be used. Many properties can be calculated, ranging from the basic ones, such as the electronic band structure or the optimized atomic structure, to more specialized ones such as the nuclear magnetic resonance shielding tensor or the electric polarization. After a brief presentation of the APW+lo method, we review the usage, capabilities, and features of WIEN2k (version 19) in detail. The various options, properties, and available approximations for the exchange-correlation functional, as well as the external libraries or programs that can be used with WIEN2k, are mentioned. References to relevant applications and some examples are also given.The conversion of optical and electrical energies in novel materials is key to modern optoelectronic and light-harvesting applications. Here, we investigate the equilibration dynamics of photoexcited 2,7-bis(biphenyl-4-yl)-2',7'-ditertbutyl-9,9'-spirobifluorene (SP6) molecules adsorbed on ZnO(10-10) using femtosecond time-resolved two-photon photoelectron and optical spectroscopies. We find that, after initial ultrafast relaxation on femtosecond and picosecond time scales, an optically dark state is populated, likely the SP6 triplet (T) state, that undergoes Dexter-type energy transfer (rDex = 1.3 nm) and exhibits a long decay time of 0.1 s. Because of this long lifetime, a photostationary state with average T-T distances below 2 nm is established at excitation densities in the 1020 cm-2 s-1 range. This large density enables decay by T-T annihilation (TTA) mediating autoionization despite an extremely low TTA rate of kTTA = 4.5 ⋅ 10-26 m3 s-1. The large external quantum efficiency of the autoionization process (up to 15%) and photocurrent densities in the mA cm-2 range offer great potential for light-harvesting applications.A new orbital optimization for the multiconfiguration self-consistent field method is presented. This method combines a second-order (SO) algorithm for the optimization of the active orbitals with the first-order super configuration interaction (SCI) optimization of the remaining closed-virtual rotations and is denoted as the SO-SCI method. The SO-SCI method significantly improves the convergence as compared to the conventional SCI method. In combination with density fitting, the intermediates from the gradient calculation can be reused to evaluate the two-electron integrals required for the active Hessian without introducing a large computational overhead. The orbitals and CI coefficients are optimized alternately, but the CI-orbital coupling is accounted for by the limited memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newton method. This further improves the speed of convergence. The method is applicable to large molecules. The efficiency and robustness of the presented method is demonstrated in benchmark calculations for 21 aromatic molecules as well as for various transition metal complexes with up to 826 electrons and 5154 basis functions.We have investigated the surface structure of a curved ZnO-crystal, going from the (0001)-facet at 0° miscut to the (101¯4)-facet at a miscut of 24.8° using scanning tunneling microscopy and low energy electron diffraction. We find that the surface separates locally into (0001)-terraces and (101¯4)-facets, where the ratio between the facets depends on the miscut angle. In X-ray photoemission spectroscopy (XPS) the intensity of an O 1s component scaling with the step density of the surface is observed. No other facets were observed and the surface maintains a high degree of order over all angles. Such a curved ZnO crystal can be used for systematic studies relating the step density to the chemical reactivity using XPS to probe the curved surface at different positions.Microstructure, structure, and compositional homogeneity of metal oxide nanoparticles can change dramatically during catalysis. Considering the different stabilities of cobalt and iron ions in the MgO host lattice [M. Niedermaier et al., J. Phys. Chem. C 123, 25991 (2019)], we employed MgO nanocube powders with or without transition metal admixtures for the oxidative coupling of methane (OCM) reaction to analyze characteristic differences in catalytic activity and sintering behavior. Undoped MgO nanocrystals exhibit the highest C2 selectivity and retain the nanocrystallinity of the starting material after 24 h time on stream. For the Co-Mg-O nanoparticle powder, which exhibits the highest activity and COx selectivity and where OCM-induced coarsening is strongest, we found that the Co2+ ions remain homogeneously distributed over the MgO lattice. Oligomycin A in vivo Trivalent Fe ions migrate to the surface of Fe-Mg-O nanoparticles where they form a magnesioferrite phase (MgFe2O4) with a characteristic impact on catalytic performance Fe-Mg-O is initially less selective than MgO despite its lower activity.