About seller
The occurrence and fate of antibiotics and antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in Municipal Wastewater Treatment Plants (WWTPs) worldwide were reviewed. The prevalence of antibiotics in WWTPs among different periods (1999-2009 and 2010-2019) and geographical areas (Europe, America, Asia and Africa) was summarized, analyzed and evaluated. The classes of macrolides (clarithromycin, erythromycin/erythromycin-H2O, azithromycin, roxithromycin), sulfonamides (sulfamethoxazole), trimethoprim, quinolones (ofloxacin, ciprofloxacin, norfloxacin) and tetracyclines (tetracycline) were the antibiotics most frequently detected, while bla (blaCTXM, blaTEM), sul (sul1, sul2), tet (tetO, tetQ, tetW) and ermB genes were the ARGs commonly reported in WWTPs. There was a positive correlation between antibiotics and ARGs commonly detected in WWTPs, except for β-lactam antibiotics and bla genes. The genes bla were found frequently, despite β-lactam antibiotics were seldom detected owing to the hydrolysis. HSP (HSP90) inhibitor Most of antibiotics had lower levels in the period 2010-2019 in Asian countries than that in period 1999-2009 in North American and European countries. In the effluent of secondary treatment, the concentration of trimethoprim was the highest (138 ng/L in median) and the concentration of other antibiotics remained at lower than 80 ng/L, while the relative abundance of ARGs ranged 2.9-4.6 logs (copies/mL, in median). Future researches on the development of effective antibiotic removal technologies, such as advanced oxidation processes, are suggested to focus on antibiotics frequently detected and their corresponding ARGs in WWTPs.Climate change is impacting surficial geomorphic processes, especially in sensitive areas such as the sub-Arctic. One of the most common examples involves landslides, which often develop in glacio-isostatically raised marine clays in northeastern Canada. One of these sites, an expansive area of complex landslide terrain located at the mouth of the Great Whale River in Nunavik, has already been studied due to its age and morphology. We present new data, based on the multidisciplinary research including geomorphic, dendrochronological, and hydroclimatological analyses, allowing us to determine how contemporary climate change has affected landslide reactivation during the last 80 years. Our research included collecting 60 cores from Picea glauca trees, growing on the marginal zone of a landslide deposit, as well as from a reference site. The tilted trees formed eccentric growth-ring patterns, which provided us with reliable dates on the landslide events. In addition to these dendrochronological data, we studied these landslides using repeated aerial photography, which showed changes in river channel constrictions in the period 1969-2019. Based on the eccentricity index of the tree ring data, we recognized disturbance events due to landslides. We compared these data with the hydroclimatological conditions and found clearly visible correlations between heavy rainfall and discharge (>95th percentile) of the Great Whale River. The increased landslide activity over the past several years can be linked to an increase in extreme summertime rainfall events. Increased landslide activity poses a real threat, through its input of large amounts of fine-grained sediment to the river, causing it to narrow.Water shortage has become a serious problem for the sustainable development of irrigated agriculture in arid regions. In these areas, the scale and planting structure of agriculture suitable for local water resources is particularly important. Irrigation water demand is a crucial indicator of water requirement in irrigation districts. In this study, Mann-Kendall method was used to analyze the temporal changes of climatic factors of the past 50 years and ArcGis to determine spatial changes in human activities. The path analysis was used to quantitative characterize direct and indirect effects of these factors on irrigation water demand and suggest how human activity can be altered to reduce irrigation water demand. The results show that temperature has risen significantly since the completion of the second-stage irrigation district, wind speed has dropped since the completion of the first-stage irrigation district, and cultivated land area has greatly expanded. The direct impact and comprehensive effect of planting area on irrigation water demand is the largest. Controlling for the total water intake, the maximum agricultural planting scale is 40,133 ha. Through adjustment of the planting structure, the scale of irrigated agriculture could increase by as much as 25.8%. Therefore, agricultural planting structures and planting scales suitable for local water resources should be put into action for future sustainable development of agriculture.Accelerated changes in land use in the regions of the Brazilian Amazon and Cerrado in the last four decades have raised questions about the possible consequences for the regional hydrology. Our study area is the Tocantins-Araguaia River Basin (TAW), focusing on the Tucuruí Hydropower Plant (THP), downstream of the TAW. In this study, we evaluated four scenarios of change in land use and cover for the TAW in which forest areas were replaced by pasture, then by agriculture, then by reforestation vegetation and, finally, by regenerated forest to investigate the impacts on the hydrological components of the basin and the hydropower potential of the THP according to these scenarios. For this evaluation, the SWAT model was used to simulate the streamflow of each scenario, so it was possible to predict the hydropower potential in the TAW under different environmental perspectives. Nonparametric statistics were used to identify the efficiency of turbines in converting the streamflow into energy at the 5% significance level. A reduction was observed in the annual evapotranspiration rate and increments were observed in the surface runoff and streamflow, but despite the increase in flow, there was no increase in the energy produced at the THP due to the inability of the turbines to convert excess water into energy, with losses in the energy production of up to 30% per month and 65% in the annual balance. Our results emphasize the importance of the sustainable management of hydrological basins located in tropical regions and aid in planning and decision-making to create public policies that better meet the demand for the exploitation of natural resources.