About seller
The potential of bio-energy recovery from real municipal wastewater was investigated using a one-stage pilot-scale submerged anaerobic membrane bioreactor (AnMBR) for a range of HRTs from 24 h to 6 h at ambient temperature around 25 °C. This pilot-scale AnMBR demonstrated a high COD removal efficiency of over 90% during an operation of 217 days for municipal wastewater treatment. The energy balance of the AnMBR was calculated from both theoretical and practical aspects. The theoretical net energy potential was calculated as 0.174 kWh/m3 by applying operational data to empirical equations, obtaining a bio-energy recovery efficiency of 69.4%. The practical net energy potential was estimated as -0.014 kWh/m3 using the powers of engines applied in a full-scale wastewater treatment plant. This is considerably lower than that of the conventional activated sludge process. These results are evidence of the potential of the AnMBR and feasibility in the treatment of municipal wastewater treatment.Adverse detrimental impacts of environmental pollution over the health regimen of people has driven a shift in lifestyle towards cleaner and natural resources, especially in the aspects of food production and consumption. Microalgae are considered a rich source of high value metabolites to be utilized as plant growth biostimulants. These organisms however, are underrated compared to other microbial counterparts, due to inappropriate knowledge on the technical, enviro-economical constrains leading to low market credibility. Thus, to avert these issues, the present review comprehensively discusses the biostimulatory potential of microalgae interactively combined with circular bio-economy perspectives. The biochemical content and intracellular action mechanism of microalgal biostimulants were described. Furthermore, detailed country-wise market trends along with the description of the existing regulatory policies are included. Enviro-techno-economic challenges are discussed, and the consensus need for shift to biorefinery and circular bio-economy concept are emphasized to achieve sustainable impacts during the commercialization of microalgal biostimulants.Allogeneic hematopoietic stem cell transplantation (HSCT) is the treatment of choice for many high-risk pediatric hematological malignant diseases (MD) and several nonmalignant diseases (NMD), including primary immune deficiencies. Infections must be managed to obtain better outcomes after HSCT. In this prospective observational study, viral monitoring was performed on 74 pediatric patients with MD and NMD who underwent HSCT. The incidence, risk factors, and impact of common opportunistic viral infections occurring within the first 100 days following HSCT were assessed. The viral pathogens included human herpesviruses, BK polyomavirus (BKV), adenovirus, parvovirus B19, and hepatitis B virus. In total, 52 (70%) patients had viral DNAemia, and 53% and 41% of patients developed human herpesvirus 6 (HHV-6) and cytomegalovirus (CMV) DNAemia, respectively. The risk factors were as follows negative CMV serology for any viral infections; age ≥ 2 years and negative CMV serology for HHV-6; age ≥5 years and female sex for BKV. The risk of viral infection did not significantly differ between MD and NMD, and no risk factor was identified for viral disease, likely because of the small sample numbers. However, despite the absence of symptoms, CMV DNAemia was found to increase the risk of mortality. The findings of the current study could improve the risk stratification and the management of pediatric HSCT recipients.Small molecule based inhibitors development is a growing field in medicinal chemistry. In recent years, different heterocyclic derivatives have been designed to counter the infections caused by multi-drug resistant bacteria. Indeed, small molecule inhibitors can be employed as an efficient antibacterial agents with different mechanism of action. Methicillin-resistant Staphylococcus aureus (MRSA) is becoming lethal to mankind due to easy transmission mode, rapid resistance development to existing antibiotics and affect difficult-to-treat skin and filmsy diseases. Benzimidazoles are a class of heterocyclic compounds which have capability to fight against MRSA. High biocompatibility of benzimidazoles, synergistic behaviour with antibiotics and their tunable physico-chemical properties attracted the researchers to develop new benzimidazole based antibacterial agents. The present review focus on recent developments of benzimidazole-hybrid molecules as anti MRSA agents and the results of in-vitro and in-vivo studies with possible mechanism of action and discussing structure-activity relationship (SAR) in different directions. Benzimdazoles act as DNA binding agents, enzyme inhibitors, anti-biofilm agents and showed synergistic effect with available antibiotics to achieve antibacterial activity against MRSA. This cumulative figures would help to design new benzimidazole-based MRSA growth inhibitors.Serine, the source of the one-carbon units essential for de novo purine and deoxythymidine synthesis plays a crucial role in the growth of cancer cells. Ziritaxestat Phosphoglycerate dehydrogenase (PHGDH) which catalyzes the first, rate-limiting step in de novo serine biosynthesis has become a promising target for the cancer treatment. Here we identified H-G6 as a potential PHGDH inhibitor from the screening of an in-house small molecule library based on the enzymatic assay. We adopted activity-directed combinatorial chemical synthesis strategy to optimize this hit compound. Compound b36 was found to be the noncompetitive and the most promising one with IC50 values of 5.96 ± 0.61 μM against PHGDH. Compound b36 inhibited the proliferation of human breast cancer and ovarian cancer cells, reduced intracellular serine synthesis, damaged DNA synthesis, and induced cell cycle arrest. Collectively, our results suggest that b36 is a novel PHGDH inhibitor, which could be a promising modulator to reprogram the serine synthesis pathway and might be a potential anticancer lead worth further exploration.A new series of diverse triazoles linked to the hydroxyl group of totarol were synthesized using click chemistry approach. The structures of these compounds were elucidated by HRMS, IR and NMR spectroscopy. The structure of compound 3 g was also confirmed by x-ray single crystal diffraction. The cytotoxicity of these compounds was evaluated by the MTT method against four cancer cell lines, including fibrosarcoma HT-1080, lung carcinoma A-549 and breast adenocarcinoma (MDA-MB-231 and MCF-7), and the results indicated that all compounds showed weak to moderate activities against all cancer cell lines with IC50 values ranging from 14.44 to 46.25 μM. On the basis of our research the structure-activity relationships (SAR) of these compounds were discussed. This work provides some important hints for further structural modification of totarol towards developing novel and highly effective anticancer drugs respectively. It is interesting to note that compound 3 g indicated a very significant cytotoxicity against HT-1080 and A-549 cell lines.