About seller
In this report, the peroxymonosulfate activation over Ag/ZnO heterojunction under visible light (Ag/ZnO/PMS/Vis) for p-nitrophenol (p-NP) contaminant degradation was conducted in detail. Herein, the catalyst dosage was decreased, and the results showed that a dosage of 0.5 g L-1 Ag/ZnO and 4 mM PMS almost completely degraded 30 mg L-1 p-NP after 90 min of irradiation. Alpelisib molecular weight In addition, the PMS activation mechanism of Ag/ZnO/PMS/Vis system was proposed by investigations of the influence of PMS concentration, the FTIR spectra, UV-Vis spectroscopy, and electrochemical analyses. Additionally, the role of SO4•- in the photocatalytic reaction is determined by a combination of a trapping test using isopropanol and tert-butanol as probe compounds and electron spin resonance (ESR) spectroscopy. This report provides a potential alternative to remove persistent organic contaminants in sewage using PMS incorporated with Ag/ZnO under visible light irradiation.Concentrations of several toxic disinfection by-products (DBP), notably haloacetonitriles (e.g., trichloroacetonitrile, TCAN) and haloketones (e.g., di- and trichloropropanone, DCPN and TCPN, respectively) are affected by chlorination conditions and the inherent instability of these DBPs. In this study, effects of temperature, chlorine dose and reaction time on the formation of TCAN, DCPN and TCPN were interpreted using the approach of differential absorbance spectroscopy. Experimental data obtained for a wide range of water quality conditions demonstrate that in some cases the concentrations of some of the unstable DBPs increased rather than decreased at low temperatures and realistically long contact times. Despite the presence of pronounced changes of the kinetics of generation and degradation of these DBPs at varying temperatures and chlorine doses, their concentrations were strongly correlated with the concurrent changes of spectroscopic properties of DOM quantified via differential absorbance measurements at 272 nm (ΔA272). The maximum values of TCAN, DCPN and TCPN concentrations observed for the chlorination of eight different surface waters occur at the relative decreases of absorbance at 272 nm (defined as RΔA272) values of ca. 0.32 (±0.03), 0.24 (±0.05), and 0.42 (±0.03), respectively. The activation energies of degradation reactions of unstable DBPs were examined and the results indicate that TCAN and TCPN are caused by their hydrolysis with OH- while the degradation of DCPN is mainly caused by halogenation reaction with HOCl. These results in this study may be important for controlling the formation of unstable DBPs and further optimization of drinking water treatment.Cellular effects of nanosecond-pulsed electric field exposures can be attenuated by an electric field reversal, a phenomenon called bipolar pulse cancellation. Our investigations of this phenomenon in neuroendocrine adrenal chromaffin cells show that a single 2-ns, 16 MV/m unipolar pulse elicited a rapid, transient rise in intracellular Ca2+ levels due to Ca2+ influx through voltage-gated calcium channels. The response was eliminated by a 2-ns bipolar pulse with positive and negative phases of equal duration and amplitude and fully restored (unipolar-equivalent response) when the delay between each phase of the bipolar pulse was 30 ns. Longer interphase intervals evoked Ca2+ responses that were greater in magnitude than those evoked by a unipolar pulse (stimulation). Cancellation was also observed when the amplitude of the second (negative) phase of the bipolar pulse was half that of the first (positive) phase but progressively lost as the amplitude of the second phase was incrementally increased above that of the first phase. When the amplitude of the second phase was twice that of the first phase, there was stimulation. By comparing the experimental results for each manipulation of the bipolar pulse waveform with analytical calculations of capacitive membrane charging/discharging, also known as accelerated membrane discharge mechanism, we show that the transition from cancellation to unipolar-equivalent stimulation broadly agrees with this model. Taken as a whole, our results demonstrate that electrostimulation of adrenal chromaffin cells with ultrashort pulses can be modulated with interphase intervals of tens of nanoseconds, a prediction of the accelerated membrane discharge mechanism not previously observed in other bipolar pulse cancellation studies. Such modulation of Ca2+ responses in a neural-type cell is promising for the potential use of nanosecond bipolar pulse technologies for remote electrostimulation applications for neuromodulation.In three-dimensional domain swapping, two protein monomers exchange a part of their structures to form an intertwined homodimer, whose subunits resemble the monomer. Several viral proteins domain swap to increase their structural complexity or functional avidity. The main protease (Mpro) of the severe acute respiratory syndrome (SARS) coronavirus proteolyzes viral polyproteins and has been a target for anti-SARS drug design. Domain swapping in the α-helical C-terminal domain of Mpro (MproC) locks Mpro into a hyperactive octameric form that is hypothesized to promote the early stages of viral replication. However, in the absence of a complete molecular understanding of the mechanism of domain swapping, investigations into the biological relevance of this octameric Mpro have stalled. Isolated MproC can exist as a monomer or a domain-swapped dimer. Here, we investigate the mechanism of domain swapping of MproC using coarse-grained structure-based models and molecular dynamics simulations. Our simulations recapitulate several experimental features of MproC folding. Further, we find that a contact between a tryptophan in the MproC domain-swapping hinge and an arginine elsewhere forms early during folding, modulates the folding route, and promotes domain swapping to the native structure. An examination of the sequence and the structure of the tryptophan containing hinge loop shows that it has a propensity to form multiple secondary structures and contacts, indicating that it could be stabilized into either the monomer- or dimer-promoting conformations by mutations or ligand binding. Finally, because all residues in the tryptophan loop are identical in SARS-CoV and SARS-CoV-2, mutations that modulate domain swapping may provide insights into the role of octameric Mpro in the early-stage viral replication of both viruses.